xgboost/src/linear/updater_gpu_coordinate.cu
Rory Mitchell 0f145a0365
Resolve GPU bug on large files (#3472)
Remove calls to thrust copy, fix indexing bug
2018-07-16 20:43:45 +12:00

348 lines
13 KiB
Plaintext

/*!
* Copyright 2018 by Contributors
* \author Rory Mitchell
*/
#include <thrust/execution_policy.h>
#include <thrust/inner_product.h>
#include <xgboost/linear_updater.h>
#include "../common/device_helpers.cuh"
#include "../common/timer.h"
#include "coordinate_common.h"
namespace xgboost {
namespace linear {
DMLC_REGISTRY_FILE_TAG(updater_gpu_coordinate);
// training parameter
struct GPUCoordinateTrainParam
: public dmlc::Parameter<GPUCoordinateTrainParam> {
/*! \brief learning_rate */
float learning_rate;
/*! \brief regularization weight for L2 norm */
float reg_lambda;
/*! \brief regularization weight for L1 norm */
float reg_alpha;
int feature_selector;
int top_k;
int debug_verbose;
int n_gpus;
int gpu_id;
bool silent;
// declare parameters
DMLC_DECLARE_PARAMETER(GPUCoordinateTrainParam) {
DMLC_DECLARE_FIELD(learning_rate)
.set_lower_bound(0.0f)
.set_default(1.0f)
.describe("Learning rate of each update.");
DMLC_DECLARE_FIELD(reg_lambda)
.set_lower_bound(0.0f)
.set_default(0.0f)
.describe("L2 regularization on weights.");
DMLC_DECLARE_FIELD(reg_alpha)
.set_lower_bound(0.0f)
.set_default(0.0f)
.describe("L1 regularization on weights.");
DMLC_DECLARE_FIELD(feature_selector)
.set_default(kCyclic)
.add_enum("cyclic", kCyclic)
.add_enum("shuffle", kShuffle)
.add_enum("thrifty", kThrifty)
.add_enum("greedy", kGreedy)
.add_enum("random", kRandom)
.describe("Feature selection or ordering method.");
DMLC_DECLARE_FIELD(top_k).set_lower_bound(0).set_default(0).describe(
"The number of top features to select in 'thrifty' feature_selector. "
"The value of zero means using all the features.");
DMLC_DECLARE_FIELD(debug_verbose)
.set_lower_bound(0)
.set_default(0)
.describe("flag to print out detailed breakdown of runtime");
DMLC_DECLARE_FIELD(n_gpus).set_default(1).describe(
"Number of devices to use.");
DMLC_DECLARE_FIELD(gpu_id).set_default(0).describe(
"Primary device ordinal.");
DMLC_DECLARE_FIELD(silent).set_default(false).describe(
"Do not print information during trainig.");
// alias of parameters
DMLC_DECLARE_ALIAS(learning_rate, eta);
DMLC_DECLARE_ALIAS(reg_lambda, lambda);
DMLC_DECLARE_ALIAS(reg_alpha, alpha);
}
/*! \brief Denormalizes the regularization penalties - to be called at each
* update */
void DenormalizePenalties(double sum_instance_weight) {
reg_lambda_denorm = reg_lambda * sum_instance_weight;
reg_alpha_denorm = reg_alpha * sum_instance_weight;
}
// denormalizated regularization penalties
float reg_lambda_denorm;
float reg_alpha_denorm;
};
void RescaleIndices(size_t ridx_begin, dh::DVec<Entry> *data) {
auto d_data = data->Data();
dh::LaunchN(data->DeviceIdx(), data->Size(),
[=] __device__(size_t idx) { d_data[idx].index -= ridx_begin; });
}
class DeviceShard {
int device_idx_;
int normalised_device_idx_; // Device index counting from param.gpu_id
dh::BulkAllocator<dh::MemoryType::kDevice> ba_;
std::vector<size_t> row_ptr_;
dh::DVec<Entry> data_;
dh::DVec<GradientPair> gpair_;
dh::CubMemory temp_;
size_t ridx_begin_;
size_t ridx_end_;
public:
DeviceShard(int device_idx, int normalised_device_idx, const SparsePage &batch,
bst_uint row_begin, bst_uint row_end,
const GPUCoordinateTrainParam &param,
const gbm::GBLinearModelParam &model_param)
: device_idx_(device_idx),
normalised_device_idx_(normalised_device_idx),
ridx_begin_(row_begin),
ridx_end_(row_end) {
dh::safe_cuda(cudaSetDevice(device_idx));
// The begin and end indices for the section of each column associated with
// this shard
std::vector<std::pair<bst_uint, bst_uint>> column_segments;
row_ptr_ = {0};
for (auto fidx = 0; fidx < batch.Size(); fidx++) {
auto col = batch[fidx];
auto cmp = [](Entry e1, Entry e2) {
return e1.index < e2.index;
};
auto column_begin =
std::lower_bound(col.data, col.data + col.length,
Entry(row_begin, 0.0f), cmp);
auto column_end =
std::upper_bound(col.data, col.data + col.length,
Entry(row_end, 0.0f), cmp);
column_segments.push_back(
std::make_pair(column_begin - col.data, column_end - col.data));
row_ptr_.push_back(row_ptr_.back() + column_end - column_begin);
}
ba_.Allocate(device_idx, param.silent, &data_, row_ptr_.back(), &gpair_,
(row_end - row_begin) * model_param.num_output_group);
for (int fidx = 0; fidx < batch.Size(); fidx++) {
auto col = batch[fidx];
auto seg = column_segments[fidx];
dh::safe_cuda(cudaMemcpy(
data_.Data() + row_ptr_[fidx], col.data + seg.first,
sizeof(Entry) * (seg.second - seg.first), cudaMemcpyHostToDevice));
}
// Rescale indices with respect to current shard
RescaleIndices(ridx_begin_, &data_);
}
void UpdateGpair(const std::vector<GradientPair> &host_gpair,
const gbm::GBLinearModelParam &model_param) {
gpair_.copy(host_gpair.begin() + ridx_begin_ * model_param.num_output_group,
host_gpair.begin() + ridx_end_ * model_param.num_output_group);
}
GradientPair GetBiasGradient(int group_idx, int num_group) {
auto counting = thrust::make_counting_iterator(0ull);
auto f = [=] __device__(size_t idx) {
return idx * num_group + group_idx;
}; // NOLINT
thrust::transform_iterator<decltype(f), decltype(counting), size_t> skip(
counting, f);
auto perm = thrust::make_permutation_iterator(gpair_.tbegin(), skip);
return dh::SumReduction(temp_, perm, ridx_end_ - ridx_begin_);
}
void UpdateBiasResidual(float dbias, int group_idx, int num_groups) {
if (dbias == 0.0f) return;
auto d_gpair = gpair_.Data();
dh::LaunchN(device_idx_, ridx_end_ - ridx_begin_, [=] __device__(size_t idx) {
auto &g = d_gpair[idx * num_groups + group_idx];
g += GradientPair(g.GetHess() * dbias, 0);
});
}
GradientPair GetGradient(int group_idx, int num_group, int fidx) {
auto d_col = data_.Data() + row_ptr_[fidx];
size_t col_size = row_ptr_[fidx + 1] - row_ptr_[fidx];
auto d_gpair = gpair_.Data();
auto counting = thrust::make_counting_iterator(0ull);
auto f = [=] __device__(size_t idx) {
auto entry = d_col[idx];
auto g = d_gpair[entry.index * num_group + group_idx];
return GradientPair(g.GetGrad() * entry.fvalue,
g.GetHess() * entry.fvalue * entry.fvalue);
}; // NOLINT
thrust::transform_iterator<decltype(f), decltype(counting), GradientPair>
multiply_iterator(counting, f);
return dh::SumReduction(temp_, multiply_iterator, col_size);
}
void UpdateResidual(float dw, int group_idx, int num_groups, int fidx) {
auto d_gpair = gpair_.Data();
auto d_col = data_.Data() + row_ptr_[fidx];
size_t col_size = row_ptr_[fidx + 1] - row_ptr_[fidx];
dh::LaunchN(device_idx_, col_size, [=] __device__(size_t idx) {
auto entry = d_col[idx];
auto &g = d_gpair[entry.index * num_groups + group_idx];
g += GradientPair(g.GetHess() * dw * entry.fvalue, 0);
});
}
};
/**
* \class GPUCoordinateUpdater
*
* \brief Coordinate descent algorithm that updates one feature per iteration
*/
class GPUCoordinateUpdater : public LinearUpdater {
public:
// set training parameter
void Init(
const std::vector<std::pair<std::string, std::string>> &args) override {
param.InitAllowUnknown(args);
selector.reset(FeatureSelector::Create(param.feature_selector));
monitor.Init("GPUCoordinateUpdater", param.debug_verbose);
}
void LazyInitShards(DMatrix *p_fmat,
const gbm::GBLinearModelParam &model_param) {
if (!shards.empty()) return;
int n_devices = dh::NDevices(param.n_gpus, p_fmat->Info().num_row_);
bst_uint row_begin = 0;
bst_uint shard_size =
std::ceil(static_cast<double>(p_fmat->Info().num_row_) / n_devices);
device_list.resize(n_devices);
for (int d_idx = 0; d_idx < n_devices; ++d_idx) {
int device_idx = (param.gpu_id + d_idx) % dh::NVisibleDevices();
device_list[d_idx] = device_idx;
}
// Partition input matrix into row segments
std::vector<size_t> row_segments;
row_segments.push_back(0);
for (int d_idx = 0; d_idx < n_devices; ++d_idx) {
bst_uint row_end = std::min(static_cast<size_t>(row_begin + shard_size),
p_fmat->Info().num_row_);
row_segments.push_back(row_end);
row_begin = row_end;
}
auto iter = p_fmat->ColIterator();
CHECK(p_fmat->SingleColBlock());
iter->Next();
auto batch = iter->Value();
shards.resize(n_devices);
// Create device shards
dh::ExecuteShards(&shards, [&](std::unique_ptr<DeviceShard> &shard) {
auto idx = &shard - &shards[0];
shard = std::unique_ptr<DeviceShard>(
new DeviceShard(device_list[idx], idx, batch, row_segments[idx],
row_segments[idx + 1], param, model_param));
});
}
void Update(HostDeviceVector<GradientPair> *in_gpair, DMatrix *p_fmat,
gbm::GBLinearModel *model, double sum_instance_weight) override {
param.DenormalizePenalties(sum_instance_weight);
monitor.Start("LazyInitShards");
this->LazyInitShards(p_fmat, model->param);
monitor.Stop("LazyInitShards");
monitor.Start("UpdateGpair");
// Update gpair
dh::ExecuteShards(&shards, [&](std::unique_ptr<DeviceShard> &shard) {
shard->UpdateGpair(in_gpair->HostVector(), model->param);
});
monitor.Stop("UpdateGpair");
monitor.Start("UpdateBias");
this->UpdateBias(p_fmat, model);
monitor.Stop("UpdateBias");
// prepare for updating the weights
selector->Setup(*model, in_gpair->HostVector(), p_fmat,
param.reg_alpha_denorm, param.reg_lambda_denorm,
param.top_k);
monitor.Start("UpdateFeature");
for (auto group_idx = 0; group_idx < model->param.num_output_group;
++group_idx) {
for (auto i = 0U; i < model->param.num_feature; i++) {
auto fidx = selector->NextFeature(
i, *model, group_idx, in_gpair->HostVector(), p_fmat,
param.reg_alpha_denorm, param.reg_lambda_denorm);
if (fidx < 0) break;
this->UpdateFeature(fidx, group_idx, &in_gpair->HostVector(), model);
}
}
monitor.Stop("UpdateFeature");
}
void UpdateBias(DMatrix *p_fmat, gbm::GBLinearModel *model) {
for (int group_idx = 0; group_idx < model->param.num_output_group;
++group_idx) {
// Get gradient
auto grad = dh::ReduceShards<GradientPair>(
&shards, [&](std::unique_ptr<DeviceShard> &shard) {
return shard->GetBiasGradient(group_idx,
model->param.num_output_group);
});
auto dbias = static_cast<float>(
param.learning_rate *
CoordinateDeltaBias(grad.GetGrad(), grad.GetHess()));
model->bias()[group_idx] += dbias;
// Update residual
dh::ExecuteShards(&shards, [&](std::unique_ptr<DeviceShard> &shard) {
shard->UpdateBiasResidual(dbias, group_idx,
model->param.num_output_group);
});
}
}
void UpdateFeature(int fidx, int group_idx,
std::vector<GradientPair> *in_gpair,
gbm::GBLinearModel *model) {
bst_float &w = (*model)[fidx][group_idx];
// Get gradient
auto grad = dh::ReduceShards<GradientPair>(
&shards, [&](std::unique_ptr<DeviceShard> &shard) {
return shard->GetGradient(group_idx, model->param.num_output_group,
fidx);
});
auto dw = static_cast<float>(param.learning_rate *
CoordinateDelta(grad.GetGrad(), grad.GetHess(),
w, param.reg_alpha_denorm,
param.reg_lambda_denorm));
w += dw;
dh::ExecuteShards(&shards, [&](std::unique_ptr<DeviceShard> &shard) {
shard->UpdateResidual(dw, group_idx, model->param.num_output_group, fidx);
});
}
// training parameter
GPUCoordinateTrainParam param;
std::unique_ptr<FeatureSelector> selector;
common::Monitor monitor;
std::vector<std::unique_ptr<DeviceShard>> shards;
std::vector<int> device_list;
};
DMLC_REGISTER_PARAMETER(GPUCoordinateTrainParam);
XGBOOST_REGISTER_LINEAR_UPDATER(GPUCoordinateUpdater, "gpu_coord_descent")
.describe(
"Update linear model according to coordinate descent algorithm. GPU "
"accelerated.")
.set_body([]() { return new GPUCoordinateUpdater(); });
} // namespace linear
} // namespace xgboost