xgboost/include/xgboost/objective.h
Rory Mitchell ccf80703ef
Clang-tidy static analysis (#3222)
* Clang-tidy static analysis

* Modernise checks

* Google coding standard checks

* Identifier renaming according to Google style
2018-04-19 18:57:13 +12:00

118 lines
3.9 KiB
C++

/*!
* Copyright 2014 by Contributors
* \file objective.h
* \brief interface of objective function used by xgboost.
* \author Tianqi Chen, Kailong Chen
*/
#ifndef XGBOOST_OBJECTIVE_H_
#define XGBOOST_OBJECTIVE_H_
#include <dmlc/registry.h>
#include <vector>
#include <utility>
#include <string>
#include <functional>
#include "./data.h"
#include "./base.h"
#include "../../src/common/host_device_vector.h"
namespace xgboost {
/*! \brief interface of objective function */
class ObjFunction {
public:
/*! \brief virtual destructor */
virtual ~ObjFunction() = default;
/*!
* \brief set configuration from pair iterators.
* \param begin The beginning iterator.
* \param end The end iterator.
* \tparam PairIter iterator<std::pair<std::string, std::string> >
*/
template<typename PairIter>
inline void Configure(PairIter begin, PairIter end);
/*!
* \brief Configure the objective with the specified parameters.
* \param args arguments to the objective function.
*/
virtual void Configure(const std::vector<std::pair<std::string, std::string> >& args) = 0;
/*!
* \brief Get gradient over each of predictions, given existing information.
* \param preds prediction of current round
* \param info information about labels, weights, groups in rank
* \param iteration current iteration number.
* \param out_gpair output of get gradient, saves gradient and second order gradient in
*/
virtual void GetGradient(HostDeviceVector<bst_float>* preds,
const MetaInfo& info,
int iteration,
HostDeviceVector<GradientPair>* out_gpair) = 0;
/*! \return the default evaluation metric for the objective */
virtual const char* DefaultEvalMetric() const = 0;
// the following functions are optional, most of time default implementation is good enough
/*!
* \brief transform prediction values, this is only called when Prediction is called
* \param io_preds prediction values, saves to this vector as well
*/
virtual void PredTransform(HostDeviceVector<bst_float> *io_preds) {}
/*!
* \brief transform prediction values, this is only called when Eval is called,
* usually it redirect to PredTransform
* \param io_preds prediction values, saves to this vector as well
*/
virtual void EvalTransform(HostDeviceVector<bst_float> *io_preds) {
this->PredTransform(io_preds);
}
/*!
* \brief transform probability value back to margin
* this is used to transform user-set base_score back to margin
* used by gradient boosting
* \return transformed value
*/
virtual bst_float ProbToMargin(bst_float base_score) const {
return base_score;
}
/*!
* \brief Create an objective function according to name.
* \param name Name of the objective.
*/
static ObjFunction* Create(const std::string& name);
};
// implementing configure.
template<typename PairIter>
inline void ObjFunction::Configure(PairIter begin, PairIter end) {
std::vector<std::pair<std::string, std::string> > vec(begin, end);
this->Configure(vec);
}
/*!
* \brief Registry entry for objective factory functions.
*/
struct ObjFunctionReg
: public dmlc::FunctionRegEntryBase<ObjFunctionReg,
std::function<ObjFunction* ()> > {
};
/*!
* \brief Macro to register objective function.
*
* \code
* // example of registering a objective
* XGBOOST_REGISTER_OBJECTIVE(LinearRegression, "reg:linear")
* .describe("Linear regression objective")
* .set_body([]() {
* return new RegLossObj(LossType::kLinearSquare);
* });
* \endcode
*/
#define XGBOOST_REGISTER_OBJECTIVE(UniqueId, Name) \
static DMLC_ATTRIBUTE_UNUSED ::xgboost::ObjFunctionReg & \
__make_ ## ObjFunctionReg ## _ ## UniqueId ## __ = \
::dmlc::Registry< ::xgboost::ObjFunctionReg>::Get()->__REGISTER__(Name)
} // namespace xgboost
#endif // XGBOOST_OBJECTIVE_H_