* [CI] Move lint to a separate script * [CI] Improved lintr launcher * Add lintr as a separate action * Add custom parsing logic to print out logs * Fix lintr issues in demos * Run R demos * Fix CRAN checks * Install XGBoost into R env before running lintr * Install devtools (needed to run demos)
24 lines
892 B
R
24 lines
892 B
R
require(xgboost)
|
|
# load in the agaricus dataset
|
|
data(agaricus.train, package = 'xgboost')
|
|
data(agaricus.test, package = 'xgboost')
|
|
dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
|
|
dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label)
|
|
|
|
param <- list(max_depth = 2, eta = 1, objective = 'binary:logistic')
|
|
watchlist <- list(eval = dtest, train = dtrain)
|
|
nrounds <- 2
|
|
|
|
# training the model for two rounds
|
|
bst <- xgb.train(param, dtrain, nrounds, nthread = 2, watchlist)
|
|
cat('start testing prediction from first n trees\n')
|
|
labels <- getinfo(dtest, 'label')
|
|
|
|
### predict using first 1 tree
|
|
ypred1 <- predict(bst, dtest, ntreelimit = 1)
|
|
# by default, we predict using all the trees
|
|
ypred2 <- predict(bst, dtest)
|
|
|
|
cat('error of ypred1=', mean(as.numeric(ypred1 > 0.5) != labels), '\n')
|
|
cat('error of ypred2=', mean(as.numeric(ypred2 > 0.5) != labels), '\n')
|