xgboost/R-package/demo/custom_objective.R
Jiaming Yuan e0a279114e
Unify logging facilities. (#3982)
* Unify logging facilities.

* Enhance `ConsoleLogger` to handle different verbosity.
* Override macros from `dmlc`.
* Don't use specialized gamma when building with GPU.
* Remove verbosity cache in monitor.
* Test monitor.
* Deprecate `silent`.
* Fix doc and messages.
* Fix python test.
* Fix silent tests.
2018-12-14 19:29:58 +08:00

66 lines
2.9 KiB
R

require(xgboost)
# load in the agaricus dataset
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label)
# note: for customized objective function, we leave objective as default
# note: what we are getting is margin value in prediction
# you must know what you are doing
watchlist <- list(eval = dtest, train = dtrain)
num_round <- 2
# user define objective function, given prediction, return gradient and second order gradient
# this is loglikelihood loss
logregobj <- function(preds, dtrain) {
labels <- getinfo(dtrain, "label")
preds <- 1/(1 + exp(-preds))
grad <- preds - labels
hess <- preds * (1 - preds)
return(list(grad = grad, hess = hess))
}
# user defined evaluation function, return a pair metric_name, result
# NOTE: when you do customized loss function, the default prediction value is margin
# this may make buildin evalution metric not function properly
# for example, we are doing logistic loss, the prediction is score before logistic transformation
# the buildin evaluation error assumes input is after logistic transformation
# Take this in mind when you use the customization, and maybe you need write customized evaluation function
evalerror <- function(preds, dtrain) {
labels <- getinfo(dtrain, "label")
err <- as.numeric(sum(labels != (preds > 0)))/length(labels)
return(list(metric = "error", value = err))
}
param <- list(max_depth=2, eta=1, nthread = 2, verbosity=0,
objective=logregobj, eval_metric=evalerror)
print ('start training with user customized objective')
# training with customized objective, we can also do step by step training
# simply look at xgboost.py's implementation of train
bst <- xgb.train(param, dtrain, num_round, watchlist)
#
# there can be cases where you want additional information
# being considered besides the property of DMatrix you can get by getinfo
# you can set additional information as attributes if DMatrix
# set label attribute of dtrain to be label, we use label as an example, it can be anything
attr(dtrain, 'label') <- getinfo(dtrain, 'label')
# this is new customized objective, where you can access things you set
# same thing applies to customized evaluation function
logregobjattr <- function(preds, dtrain) {
# now you can access the attribute in customized function
labels <- attr(dtrain, 'label')
preds <- 1/(1 + exp(-preds))
grad <- preds - labels
hess <- preds * (1 - preds)
return(list(grad = grad, hess = hess))
}
param <- list(max_depth=2, eta=1, nthread = 2, verbosity=0,
objective=logregobjattr, eval_metric=evalerror)
print ('start training with user customized objective, with additional attributes in DMatrix')
# training with customized objective, we can also do step by step training
# simply look at xgboost.py's implementation of train
bst <- xgb.train(param, dtrain, num_round, watchlist)