217 lines
6.8 KiB
Python
217 lines
6.8 KiB
Python
# pylint: disable= invalid-name, unused-import
|
|
"""For compatibility and optional dependencies."""
|
|
import importlib.util
|
|
import logging
|
|
import sys
|
|
import types
|
|
from typing import Any, Dict, List, Optional, Sequence, cast
|
|
|
|
import numpy as np
|
|
|
|
from ._typing import _T
|
|
|
|
assert sys.version_info[0] == 3, "Python 2 is no longer supported."
|
|
|
|
|
|
def py_str(x: bytes) -> str:
|
|
"""convert c string back to python string"""
|
|
return x.decode("utf-8") # type: ignore
|
|
|
|
|
|
def lazy_isinstance(instance: Any, module: str, name: str) -> bool:
|
|
"""Use string representation to identify a type."""
|
|
|
|
# Notice, we use .__class__ as opposed to type() in order
|
|
# to support object proxies such as weakref.proxy
|
|
cls = instance.__class__
|
|
is_same_module = cls.__module__ == module
|
|
has_same_name = cls.__name__ == name
|
|
return is_same_module and has_same_name
|
|
|
|
|
|
# pandas
|
|
try:
|
|
from pandas import DataFrame, MultiIndex, Series
|
|
from pandas import concat as pandas_concat
|
|
|
|
PANDAS_INSTALLED = True
|
|
except ImportError:
|
|
MultiIndex = object
|
|
DataFrame = object
|
|
Series = object
|
|
pandas_concat = None
|
|
PANDAS_INSTALLED = False
|
|
|
|
|
|
# sklearn
|
|
try:
|
|
from sklearn.base import BaseEstimator as XGBModelBase
|
|
from sklearn.base import ClassifierMixin as XGBClassifierBase
|
|
from sklearn.base import RegressorMixin as XGBRegressorBase
|
|
from sklearn.preprocessing import LabelEncoder
|
|
|
|
try:
|
|
from sklearn.model_selection import KFold as XGBKFold
|
|
from sklearn.model_selection import StratifiedKFold as XGBStratifiedKFold
|
|
except ImportError:
|
|
from sklearn.cross_validation import KFold as XGBKFold
|
|
from sklearn.cross_validation import StratifiedKFold as XGBStratifiedKFold
|
|
|
|
SKLEARN_INSTALLED = True
|
|
|
|
except ImportError:
|
|
SKLEARN_INSTALLED = False
|
|
|
|
# used for compatibility without sklearn
|
|
XGBModelBase = object
|
|
XGBClassifierBase = object
|
|
XGBRegressorBase = object
|
|
LabelEncoder = object
|
|
|
|
XGBKFold = None
|
|
XGBStratifiedKFold = None
|
|
|
|
|
|
_logger = logging.getLogger(__name__)
|
|
|
|
|
|
def is_cudf_available() -> bool:
|
|
"""Check cuDF package available or not"""
|
|
if importlib.util.find_spec("cudf") is None:
|
|
return False
|
|
try:
|
|
import cudf
|
|
|
|
return True
|
|
except ImportError:
|
|
_logger.exception("Importing cuDF failed, use DMatrix instead of QDM")
|
|
return False
|
|
|
|
|
|
def is_cupy_available() -> bool:
|
|
"""Check cupy package available or not"""
|
|
if importlib.util.find_spec("cupy") is None:
|
|
return False
|
|
try:
|
|
import cupy
|
|
|
|
return True
|
|
except ImportError:
|
|
return False
|
|
|
|
|
|
def import_cupy() -> types.ModuleType:
|
|
"""Import cupy."""
|
|
if not is_cupy_available():
|
|
raise ImportError("`cupy` is required for handling CUDA buffer.")
|
|
|
|
import cupy # pylint: disable=import-error
|
|
|
|
return cupy
|
|
|
|
|
|
try:
|
|
import scipy.sparse as scipy_sparse
|
|
from scipy.sparse import csr_matrix as scipy_csr
|
|
except ImportError:
|
|
scipy_sparse = False
|
|
scipy_csr = object
|
|
|
|
|
|
def concat(value: Sequence[_T]) -> _T: # pylint: disable=too-many-return-statements
|
|
"""Concatenate row-wise."""
|
|
if isinstance(value[0], np.ndarray):
|
|
value_arr = cast(Sequence[np.ndarray], value)
|
|
return np.concatenate(value_arr, axis=0)
|
|
if scipy_sparse and isinstance(value[0], scipy_sparse.csr_matrix):
|
|
return scipy_sparse.vstack(value, format="csr")
|
|
if scipy_sparse and isinstance(value[0], scipy_sparse.csc_matrix):
|
|
return scipy_sparse.vstack(value, format="csc")
|
|
if scipy_sparse and isinstance(value[0], scipy_sparse.spmatrix):
|
|
# other sparse format will be converted to CSR.
|
|
return scipy_sparse.vstack(value, format="csr")
|
|
if PANDAS_INSTALLED and isinstance(value[0], (DataFrame, Series)):
|
|
return pandas_concat(value, axis=0)
|
|
if lazy_isinstance(value[0], "cudf.core.dataframe", "DataFrame") or lazy_isinstance(
|
|
value[0], "cudf.core.series", "Series"
|
|
):
|
|
from cudf import concat as CUDF_concat # pylint: disable=import-error
|
|
|
|
return CUDF_concat(value, axis=0)
|
|
from .data import _is_cupy_alike
|
|
|
|
if _is_cupy_alike(value[0]):
|
|
import cupy # pylint: disable=import-error
|
|
|
|
# pylint: disable=c-extension-no-member,no-member
|
|
d = cupy.cuda.runtime.getDevice()
|
|
for v in value:
|
|
arr = cast(cupy.ndarray, v)
|
|
d_v = arr.device.id
|
|
assert d_v == d, "Concatenating arrays on different devices."
|
|
return cupy.concatenate(value, axis=0)
|
|
raise TypeError("Unknown type.")
|
|
|
|
|
|
# Modified from tensorflow with added caching. There's a `LazyLoader` in
|
|
# `importlib.utils`, except it's unclear from its document on how to use it. This one
|
|
# seems to be easy to understand and works out of box.
|
|
|
|
|
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
|
|
# file except in compliance with the License. You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software distributed under
|
|
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
# KIND, either express or implied. See the License for the specific language governing
|
|
# permissions and limitations under the License.
|
|
class LazyLoader(types.ModuleType):
|
|
"""Lazily import a module, mainly to avoid pulling in large dependencies."""
|
|
|
|
def __init__(
|
|
self,
|
|
local_name: str,
|
|
parent_module_globals: Dict,
|
|
name: str,
|
|
warning: Optional[str] = None,
|
|
) -> None:
|
|
self._local_name = local_name
|
|
self._parent_module_globals = parent_module_globals
|
|
self._warning = warning
|
|
self.module: Optional[types.ModuleType] = None
|
|
|
|
super().__init__(name)
|
|
|
|
def _load(self) -> types.ModuleType:
|
|
"""Load the module and insert it into the parent's globals."""
|
|
# Import the target module and insert it into the parent's namespace
|
|
module = importlib.import_module(self.__name__)
|
|
self._parent_module_globals[self._local_name] = module
|
|
|
|
# Emit a warning if one was specified
|
|
if self._warning:
|
|
logging.warning(self._warning)
|
|
# Make sure to only warn once.
|
|
self._warning = None
|
|
|
|
# Update this object's dict so that if someone keeps a reference to the
|
|
# LazyLoader, lookups are efficient (__getattr__ is only called on lookups
|
|
# that fail).
|
|
self.__dict__.update(module.__dict__)
|
|
|
|
return module
|
|
|
|
def __getattr__(self, item: str) -> Any:
|
|
if not self.module:
|
|
self.module = self._load()
|
|
return getattr(self.module, item)
|
|
|
|
def __dir__(self) -> List[str]:
|
|
if not self.module:
|
|
self.module = self._load()
|
|
return dir(self.module)
|