xgboost/R-package/R/xgb.cv.R
david-cortes bc9ea62ec0
[R] Make xgb.cv work with xgb.DMatrix only, adding support for survival and ranking fields (#10031)
---------

Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2024-03-31 21:53:00 +08:00

387 lines
15 KiB
R

#' Cross Validation
#'
#' The cross validation function of xgboost.
#'
#' @param params the list of parameters. The complete list of parameters is
#' available in the \href{http://xgboost.readthedocs.io/en/latest/parameter.html}{online documentation}. Below
#' is a shorter summary:
#' \itemize{
#' \item \code{objective} objective function, common ones are
#' \itemize{
#' \item \code{reg:squarederror} Regression with squared loss.
#' \item \code{binary:logistic} logistic regression for classification.
#' \item See \code{\link[=xgb.train]{xgb.train}()} for complete list of objectives.
#' }
#' \item \code{eta} step size of each boosting step
#' \item \code{max_depth} maximum depth of the tree
#' \item \code{nthread} number of thread used in training, if not set, all threads are used
#' }
#'
#' See \code{\link{xgb.train}} for further details.
#' See also demo/ for walkthrough example in R.
#'
#' Note that, while `params` accepts a `seed` entry and will use such parameter for model training if
#' supplied, this seed is not used for creation of train-test splits, which instead rely on R's own RNG
#' system - thus, for reproducible results, one needs to call the `set.seed` function beforehand.
#' @param data An `xgb.DMatrix` object, with corresponding fields like `label` or bounds as required
#' for model training by the objective.
#'
#' Note that only the basic `xgb.DMatrix` class is supported - variants such as `xgb.QuantileDMatrix`
#' or `xgb.ExternalDMatrix` are not supported here.
#' @param nrounds the max number of iterations
#' @param nfold the original dataset is randomly partitioned into \code{nfold} equal size subsamples.
#' @param prediction A logical value indicating whether to return the test fold predictions
#' from each CV model. This parameter engages the \code{\link{xgb.cb.cv.predict}} callback.
#' @param showsd \code{boolean}, whether to show standard deviation of cross validation
#' @param metrics, list of evaluation metrics to be used in cross validation,
#' when it is not specified, the evaluation metric is chosen according to objective function.
#' Possible options are:
#' \itemize{
#' \item \code{error} binary classification error rate
#' \item \code{rmse} Rooted mean square error
#' \item \code{logloss} negative log-likelihood function
#' \item \code{mae} Mean absolute error
#' \item \code{mape} Mean absolute percentage error
#' \item \code{auc} Area under curve
#' \item \code{aucpr} Area under PR curve
#' \item \code{merror} Exact matching error, used to evaluate multi-class classification
#' }
#' @param obj customized objective function. Returns gradient and second order
#' gradient with given prediction and dtrain.
#' @param feval customized evaluation function. Returns
#' \code{list(metric='metric-name', value='metric-value')} with given
#' prediction and dtrain.
#' @param stratified A \code{boolean} indicating whether sampling of folds should be stratified
#' by the values of outcome labels. For real-valued labels in regression objectives,
#' stratification will be done by discretizing the labels into up to 5 buckets beforehand.
#'
#' If passing "auto", will be set to `TRUE` if the objective in `params` is a classification
#' objective (from XGBoost's built-in objectives, doesn't apply to custom ones), and to
#' `FALSE` otherwise.
#'
#' This parameter is ignored when `data` has a `group` field - in such case, the splitting
#' will be based on whole groups (note that this might make the folds have different sizes).
#'
#' Value `TRUE` here is \bold{not} supported for custom objectives.
#' @param folds \code{list} provides a possibility to use a list of pre-defined CV folds
#' (each element must be a vector of test fold's indices). When folds are supplied,
#' the \code{nfold} and \code{stratified} parameters are ignored.
#'
#' If `data` has a `group` field and the objective requires this field, each fold (list element)
#' must additionally have two attributes (retrievable through \link{attributes}) named `group_test`
#' and `group_train`, which should hold the `group` to assign through \link{setinfo.xgb.DMatrix} to
#' the resulting DMatrices.
#' @param train_folds \code{list} list specifying which indicies to use for training. If \code{NULL}
#' (the default) all indices not specified in \code{folds} will be used for training.
#'
#' This is not supported when `data` has `group` field.
#' @param verbose \code{boolean}, print the statistics during the process
#' @param print_every_n Print each n-th iteration evaluation messages when \code{verbose>0}.
#' Default is 1 which means all messages are printed. This parameter is passed to the
#' \code{\link{xgb.cb.print.evaluation}} callback.
#' @param early_stopping_rounds If \code{NULL}, the early stopping function is not triggered.
#' If set to an integer \code{k}, training with a validation set will stop if the performance
#' doesn't improve for \code{k} rounds.
#' Setting this parameter engages the \code{\link{xgb.cb.early.stop}} callback.
#' @param maximize If \code{feval} and \code{early_stopping_rounds} are set,
#' then this parameter must be set as well.
#' When it is \code{TRUE}, it means the larger the evaluation score the better.
#' This parameter is passed to the \code{\link{xgb.cb.early.stop}} callback.
#' @param callbacks a list of callback functions to perform various task during boosting.
#' See \code{\link{xgb.Callback}}. Some of the callbacks are automatically created depending on the
#' parameters' values. User can provide either existing or their own callback methods in order
#' to customize the training process.
#' @param ... other parameters to pass to \code{params}.
#'
#' @details
#' The original sample is randomly partitioned into \code{nfold} equal size subsamples.
#'
#' Of the \code{nfold} subsamples, a single subsample is retained as the validation data for testing the model,
#' and the remaining \code{nfold - 1} subsamples are used as training data.
#'
#' The cross-validation process is then repeated \code{nrounds} times, with each of the
#' \code{nfold} subsamples used exactly once as the validation data.
#'
#' All observations are used for both training and validation.
#'
#' Adapted from \url{https://en.wikipedia.org/wiki/Cross-validation_\%28statistics\%29}
#'
#' @return
#' An object of class \code{xgb.cv.synchronous} with the following elements:
#' \itemize{
#' \item \code{call} a function call.
#' \item \code{params} parameters that were passed to the xgboost library. Note that it does not
#' capture parameters changed by the \code{\link{xgb.cb.reset.parameters}} callback.
#' \item \code{evaluation_log} evaluation history stored as a \code{data.table} with the
#' first column corresponding to iteration number and the rest corresponding to the
#' CV-based evaluation means and standard deviations for the training and test CV-sets.
#' It is created by the \code{\link{xgb.cb.evaluation.log}} callback.
#' \item \code{niter} number of boosting iterations.
#' \item \code{nfeatures} number of features in training data.
#' \item \code{folds} the list of CV folds' indices - either those passed through the \code{folds}
#' parameter or randomly generated.
#' \item \code{best_iteration} iteration number with the best evaluation metric value
#' (only available with early stopping).
#' }
#'
#' Plus other potential elements that are the result of callbacks, such as a list `cv_predict` with
#' a sub-element `pred` when passing `prediction = TRUE`, which is added by the \link{xgb.cb.cv.predict}
#' callback (note that one can also pass it manually under `callbacks` with different settings,
#' such as saving also the models created during cross validation); or a list `early_stop` which
#' will contain elements such as `best_iteration` when using the early stopping callback (\link{xgb.cb.early.stop}).
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
#' cv <- xgb.cv(data = dtrain, nrounds = 3, nthread = 2, nfold = 5, metrics = list("rmse","auc"),
#' max_depth = 3, eta = 1, objective = "binary:logistic")
#' print(cv)
#' print(cv, verbose=TRUE)
#'
#' @export
xgb.cv <- function(params = list(), data, nrounds, nfold,
prediction = FALSE, showsd = TRUE, metrics = list(),
obj = NULL, feval = NULL, stratified = "auto", folds = NULL, train_folds = NULL,
verbose = TRUE, print_every_n = 1L,
early_stopping_rounds = NULL, maximize = NULL, callbacks = list(), ...) {
check.deprecation(...)
stopifnot(inherits(data, "xgb.DMatrix"))
if (inherits(data, "xgb.DMatrix") && .Call(XGCheckNullPtr_R, data)) {
stop("'data' is an invalid 'xgb.DMatrix' object. Must be constructed again.")
}
params <- check.booster.params(params, ...)
# TODO: should we deprecate the redundant 'metrics' parameter?
for (m in metrics)
params <- c(params, list("eval_metric" = m))
check.custom.obj()
check.custom.eval()
if (stratified == "auto") {
if (is.character(params$objective)) {
stratified <- (
(params$objective %in% .CLASSIFICATION_OBJECTIVES())
&& !(params$objective %in% .RANKING_OBJECTIVES())
)
} else {
stratified <- FALSE
}
}
# Check the labels and groups
cv_label <- getinfo(data, "label")
cv_group <- getinfo(data, "group")
if (!is.null(train_folds) && NROW(cv_group)) {
stop("'train_folds' is not supported for DMatrix object with 'group' field.")
}
# CV folds
if (!is.null(folds)) {
if (!is.list(folds) || length(folds) < 2)
stop("'folds' must be a list with 2 or more elements that are vectors of indices for each CV-fold")
nfold <- length(folds)
} else {
if (nfold <= 1)
stop("'nfold' must be > 1")
folds <- generate.cv.folds(nfold, nrow(data), stratified, cv_label, cv_group, params)
}
# Callbacks
tmp <- .process.callbacks(callbacks, is_cv = TRUE)
callbacks <- tmp$callbacks
cb_names <- tmp$cb_names
rm(tmp)
# Early stopping callback
if (!is.null(early_stopping_rounds) && !("early_stop" %in% cb_names)) {
callbacks <- add.callback(
callbacks,
xgb.cb.early.stop(
early_stopping_rounds,
maximize = maximize,
verbose = verbose
),
as_first_elt = TRUE
)
}
# verbosity & evaluation printing callback:
params <- c(params, list(silent = 1))
print_every_n <- max(as.integer(print_every_n), 1L)
if (verbose && !("print_evaluation" %in% cb_names)) {
callbacks <- add.callback(callbacks, xgb.cb.print.evaluation(print_every_n, showsd = showsd))
}
# evaluation log callback: always is on in CV
if (!("evaluation_log" %in% cb_names)) {
callbacks <- add.callback(callbacks, xgb.cb.evaluation.log())
}
# CV-predictions callback
if (prediction && !("cv_predict" %in% cb_names)) {
callbacks <- add.callback(callbacks, xgb.cb.cv.predict(save_models = FALSE))
}
# create the booster-folds
# train_folds
dall <- data
bst_folds <- lapply(seq_along(folds), function(k) {
dtest <- xgb.slice.DMatrix(dall, folds[[k]], allow_groups = TRUE)
# code originally contributed by @RolandASc on stackoverflow
if (is.null(train_folds))
dtrain <- xgb.slice.DMatrix(dall, unlist(folds[-k]), allow_groups = TRUE)
else
dtrain <- xgb.slice.DMatrix(dall, train_folds[[k]], allow_groups = TRUE)
if (!is.null(attributes(folds[[k]])$group_test)) {
setinfo(dtest, "group", attributes(folds[[k]])$group_test)
setinfo(dtrain, "group", attributes(folds[[k]])$group_train)
}
bst <- xgb.Booster(
params = params,
cachelist = list(dtrain, dtest),
modelfile = NULL
)
bst <- bst$bst
list(dtrain = dtrain, bst = bst, evals = list(train = dtrain, test = dtest), index = folds[[k]])
})
# extract parameters that can affect the relationship b/w #trees and #iterations
num_class <- max(as.numeric(NVL(params[['num_class']], 1)), 1) # nolint
# those are fixed for CV (no training continuation)
begin_iteration <- 1
end_iteration <- nrounds
.execute.cb.before.training(
callbacks,
bst_folds,
dall,
NULL,
begin_iteration,
end_iteration
)
# synchronous CV boosting: run CV folds' models within each iteration
for (iteration in begin_iteration:end_iteration) {
.execute.cb.before.iter(
callbacks,
bst_folds,
dall,
NULL,
iteration
)
msg <- lapply(bst_folds, function(fd) {
xgb.iter.update(
bst = fd$bst,
dtrain = fd$dtrain,
iter = iteration - 1,
obj = obj
)
xgb.iter.eval(
bst = fd$bst,
evals = fd$evals,
iter = iteration - 1,
feval = feval
)
})
msg <- simplify2array(msg)
should_stop <- .execute.cb.after.iter(
callbacks,
bst_folds,
dall,
NULL,
iteration,
msg
)
if (should_stop) break
}
cb_outputs <- .execute.cb.after.training(
callbacks,
bst_folds,
dall,
NULL,
iteration,
msg
)
# the CV result
ret <- list(
call = match.call(),
params = params,
niter = iteration,
nfeatures = ncol(dall),
folds = folds
)
ret <- c(ret, cb_outputs)
class(ret) <- 'xgb.cv.synchronous'
return(invisible(ret))
}
#' Print xgb.cv result
#'
#' Prints formatted results of \code{xgb.cv}.
#'
#' @param x an \code{xgb.cv.synchronous} object
#' @param verbose whether to print detailed data
#' @param ... passed to \code{data.table.print}
#'
#' @details
#' When not verbose, it would only print the evaluation results,
#' including the best iteration (when available).
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' train <- agaricus.train
#' cv <- xgb.cv(data = xgb.DMatrix(train$data, label = train$label), nfold = 5, max_depth = 2,
#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
#' print(cv)
#' print(cv, verbose=TRUE)
#'
#' @rdname print.xgb.cv
#' @method print xgb.cv.synchronous
#' @export
print.xgb.cv.synchronous <- function(x, verbose = FALSE, ...) {
cat('##### xgb.cv ', length(x$folds), '-folds\n', sep = '')
if (verbose) {
if (!is.null(x$call)) {
cat('call:\n ')
print(x$call)
}
if (!is.null(x$params)) {
cat('params (as set within xgb.cv):\n')
cat(' ',
paste(names(x$params),
paste0('"', unlist(x$params), '"'),
sep = ' = ', collapse = ', '), '\n', sep = '')
}
for (n in c('niter', 'best_iteration')) {
if (is.null(x$early_stop[[n]]))
next
cat(n, ': ', x$early_stop[[n]], '\n', sep = '')
}
if (!is.null(x$cv_predict$pred)) {
cat('pred:\n')
str(x$cv_predict$pred)
}
}
if (verbose)
cat('evaluation_log:\n')
print(x$evaluation_log, row.names = FALSE, ...)
if (!is.null(x$early_stop$best_iteration)) {
cat('Best iteration:\n')
print(x$evaluation_log[x$early_stop$best_iteration], row.names = FALSE, ...)
}
invisible(x)
}