xgboost/tests/cpp/tree/hist/test_evaluate_splits.cc
Jiaming Yuan 0d0abe1845
Support optimal partitioning for GPU hist. (#7652)
* Implement `MaxCategory` in quantile.
* Implement partition-based split for GPU evaluation.  Currently, it's based on the existing evaluation function.
* Extract an evaluator from GPU Hist to store the needed states.
* Added some CUDA stream/event utilities.
* Update document with references.
* Fixed a bug in approx evaluator where the number of data points is less than the number of categories.
2022-02-15 03:03:12 +08:00

188 lines
6.6 KiB
C++

/*!
* Copyright 2021-2022 by XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <xgboost/base.h>
#include "../../../../src/common/hist_util.h"
#include "../../../../src/tree/hist/evaluate_splits.h"
#include "../../../../src/tree/updater_quantile_hist.h"
#include "../test_evaluate_splits.h"
#include "../../helpers.h"
namespace xgboost {
namespace tree {
template <typename GradientSumT> void TestEvaluateSplits() {
int static constexpr kRows = 8, kCols = 16;
auto orig = omp_get_max_threads();
int32_t n_threads = std::min(omp_get_max_threads(), 4);
omp_set_num_threads(n_threads);
auto sampler = std::make_shared<common::ColumnSampler>();
TrainParam param;
param.UpdateAllowUnknown(Args{{"min_child_weight", "0"}, {"reg_lambda", "0"}});
auto dmat = RandomDataGenerator(kRows, kCols, 0).Seed(3).GenerateDMatrix();
auto evaluator = HistEvaluator<GradientSumT, CPUExpandEntry>{
param, dmat->Info(), n_threads, sampler, ObjInfo{ObjInfo::kRegression}};
common::HistCollection<GradientSumT> hist;
std::vector<GradientPair> row_gpairs = {
{1.23f, 0.24f}, {0.24f, 0.25f}, {0.26f, 0.27f}, {2.27f, 0.28f},
{0.27f, 0.29f}, {0.37f, 0.39f}, {-0.47f, 0.49f}, {0.57f, 0.59f}};
size_t constexpr kMaxBins = 4;
// dense, no missing values
GHistIndexMatrix gmat(dmat.get(), kMaxBins, 0.5, false, common::OmpGetNumThreads(0));
common::RowSetCollection row_set_collection;
std::vector<size_t> &row_indices = *row_set_collection.Data();
row_indices.resize(kRows);
std::iota(row_indices.begin(), row_indices.end(), 0);
row_set_collection.Init();
auto hist_builder = GHistBuilder<GradientSumT>(gmat.cut.Ptrs().back());
hist.Init(gmat.cut.Ptrs().back());
hist.AddHistRow(0);
hist.AllocateAllData();
hist_builder.template BuildHist<false>(row_gpairs, row_set_collection[0],
gmat, hist[0]);
// Compute total gradient for all data points
GradientPairPrecise total_gpair;
for (const auto &e : row_gpairs) {
total_gpair += GradientPairPrecise(e);
}
RegTree tree;
std::vector<CPUExpandEntry> entries(1);
entries.front().nid = 0;
entries.front().depth = 0;
evaluator.InitRoot(GradStats{total_gpair});
evaluator.EvaluateSplits(hist, gmat.cut, {}, tree, &entries);
auto best_loss_chg =
evaluator.Evaluator().CalcSplitGain(
param, 0, entries.front().split.SplitIndex(),
entries.front().split.left_sum, entries.front().split.right_sum) -
evaluator.Stats().front().root_gain;
ASSERT_EQ(entries.front().split.loss_chg, best_loss_chg);
ASSERT_GT(entries.front().split.loss_chg, 16.2f);
// Assert that's the best split
for (size_t i = 1; i < gmat.cut.Ptrs().size(); ++i) {
GradStats left, right;
for (size_t j = gmat.cut.Ptrs()[i-1]; j < gmat.cut.Ptrs()[i]; ++j) {
auto loss_chg =
evaluator.Evaluator().CalcSplitGain(param, 0, i - 1, left, right) -
evaluator.Stats().front().root_gain;
ASSERT_GE(best_loss_chg, loss_chg);
left.Add(hist[0][j].GetGrad(), hist[0][j].GetHess());
right.SetSubstract(GradStats{total_gpair}, left);
}
}
omp_set_num_threads(orig);
}
TEST(HistEvaluator, Evaluate) {
TestEvaluateSplits<float>();
TestEvaluateSplits<double>();
}
TEST(HistEvaluator, Apply) {
RegTree tree;
int static constexpr kNRows = 8, kNCols = 16;
TrainParam param;
param.UpdateAllowUnknown(Args{{}});
auto dmat = RandomDataGenerator(kNRows, kNCols, 0).Seed(3).GenerateDMatrix();
auto sampler = std::make_shared<common::ColumnSampler>();
auto evaluator_ = HistEvaluator<float, CPUExpandEntry>{param, dmat->Info(), 4, sampler,
ObjInfo{ObjInfo::kRegression}};
CPUExpandEntry entry{0, 0, 10.0f};
entry.split.left_sum = GradStats{0.4, 0.6f};
entry.split.right_sum = GradStats{0.5, 0.7f};
evaluator_.ApplyTreeSplit(entry, &tree);
ASSERT_EQ(tree.NumExtraNodes(), 2);
ASSERT_EQ(tree.Stat(tree[0].LeftChild()).sum_hess, 0.6f);
ASSERT_EQ(tree.Stat(tree[0].RightChild()).sum_hess, 0.7f);
}
TEST_F(TestPartitionBasedSplit, CPUHist) {
// check the evaluator is returning the optimal split
std::vector<FeatureType> ft{FeatureType::kCategorical};
auto sampler = std::make_shared<common::ColumnSampler>();
HistEvaluator<double, CPUExpandEntry> evaluator{param_, info_, common::OmpGetNumThreads(0),
sampler, ObjInfo{ObjInfo::kRegression}};
evaluator.InitRoot(GradStats{total_gpair_});
RegTree tree;
std::vector<CPUExpandEntry> entries(1);
evaluator.EvaluateSplits(hist_, cuts_, {ft}, tree, &entries);
ASSERT_NEAR(entries[0].split.loss_chg, best_score_, 1e-16);
}
namespace {
auto CompareOneHotAndPartition(bool onehot) {
int static constexpr kRows = 128, kCols = 1;
using GradientSumT = double;
std::vector<FeatureType> ft(kCols, FeatureType::kCategorical);
TrainParam param;
if (onehot) {
// force use one-hot
param.UpdateAllowUnknown(
Args{{"min_child_weight", "0"}, {"reg_lambda", "0"}, {"max_cat_to_onehot", "100"}});
} else {
param.UpdateAllowUnknown(
Args{{"min_child_weight", "0"}, {"reg_lambda", "0"}, {"max_cat_to_onehot", "1"}});
}
size_t n_cats{2};
auto dmat =
RandomDataGenerator(kRows, kCols, 0).Seed(3).Type(ft).MaxCategory(n_cats).GenerateDMatrix();
int32_t n_threads = 16;
auto sampler = std::make_shared<common::ColumnSampler>();
auto evaluator = HistEvaluator<GradientSumT, CPUExpandEntry>{
param, dmat->Info(), n_threads, sampler, ObjInfo{ObjInfo::kRegression}};
std::vector<CPUExpandEntry> entries(1);
for (auto const &gmat : dmat->GetBatches<GHistIndexMatrix>({32, param.sparse_threshold})) {
common::HistCollection<GradientSumT> hist;
entries.front().nid = 0;
entries.front().depth = 0;
hist.Init(gmat.cut.TotalBins());
hist.AddHistRow(0);
hist.AllocateAllData();
auto node_hist = hist[0];
CHECK_EQ(node_hist.size(), n_cats);
CHECK_EQ(node_hist.size(), gmat.cut.Ptrs().back());
GradientPairPrecise total_gpair;
for (size_t i = 0; i < node_hist.size(); ++i) {
node_hist[i] = {static_cast<double>(node_hist.size() - i), 1.0};
total_gpair += node_hist[i];
}
RegTree tree;
evaluator.InitRoot(GradStats{total_gpair});
evaluator.EvaluateSplits(hist, gmat.cut, ft, tree, &entries);
}
return entries.front();
}
} // anonymous namespace
TEST(HistEvaluator, Categorical) {
auto with_onehot = CompareOneHotAndPartition(true);
auto with_part = CompareOneHotAndPartition(false);
ASSERT_EQ(with_onehot.split.loss_chg, with_part.split.loss_chg);
}
} // namespace tree
} // namespace xgboost