xgboost/R-package/man/xgb.importance.Rd
2014-12-28 10:46:31 +01:00

34 lines
1.1 KiB
R

% Generated by roxygen2 (4.1.0): do not edit by hand
% Please edit documentation in R/xgb.importance.R
\name{xgb.importance}
\alias{xgb.importance}
\title{Show importance of features in a model}
\usage{
xgb.importance(feature_names, filename_dump)
}
\arguments{
\item{feature_names}{names of each feature as a character vector. Can be extracted from a sparse matrix.}
\item{filename_dump}{the name of the text file.}
}
\description{
Read a xgboost model in text file format. Return a data.table of the features with their weight.
}
\examples{
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
#Both dataset are list with two items, a sparse matrix and labels (outcome column which will be learned).
#Each column of the sparse Matrix is a feature in one hot encoding format.
train <- agaricus.train
test <- agaricus.test
bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
eta = 1, nround = 2,objective = "binary:logistic")
xgb.dump(bst, 'xgb.model.dump')
#agaricus.test$data@Dimnames[[2]] represents the column name of the sparse matrix.
xgb.importance(agaricus.test$data@Dimnames[[2]], 'xgb.model.dump')
}