* Refactor configuration [Part II].
* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.
* Learner changes:
** Make `LearnerImpl` the only source of configuration.
All configurations are stored and carried out by `LearnerImpl::Configure()`.
** Remove booster in C API.
Originally kept for "compatibility reason", but did not state why. So here
we just remove it.
** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`. Configuration will always be lazy.
** Run `Configure` before every iteration.
* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.
`GBTree` is now used to dispatch the predictor.
** Remove some GPU Predictor tests.
* IO
No IO changes. The binary model format stability is tested by comparing
hashing value of save models between two commits
35 lines
1.0 KiB
C++
35 lines
1.0 KiB
C++
// Copyright by Contributors
|
|
#include <xgboost/objective.h>
|
|
#include <xgboost/generic_parameters.h>
|
|
#include "../helpers.h"
|
|
|
|
TEST(Objective, PairwiseRankingGPair) {
|
|
xgboost::GenericParameter tparam;
|
|
std::vector<std::pair<std::string, std::string>> args;
|
|
tparam.InitAllowUnknown(args);
|
|
|
|
xgboost::ObjFunction * obj =
|
|
xgboost::ObjFunction::Create("rank:pairwise", &tparam);
|
|
obj->Configure(args);
|
|
// Test with setting sample weight to second query group
|
|
CheckRankingObjFunction(obj,
|
|
{0, 0.1f, 0, 0.1f},
|
|
{0, 1, 0, 1},
|
|
{2.0f, 0.0f},
|
|
{0, 2, 4},
|
|
{1.9f, -1.9f, 0.0f, 0.0f},
|
|
{1.995f, 1.995f, 0.0f, 0.0f});
|
|
|
|
CheckRankingObjFunction(obj,
|
|
{0, 0.1f, 0, 0.1f},
|
|
{0, 1, 0, 1},
|
|
{1.0f, 1.0f},
|
|
{0, 2, 4},
|
|
{0.95f, -0.95f, 0.95f, -0.95f},
|
|
{0.9975f, 0.9975f, 0.9975f, 0.9975f});
|
|
|
|
ASSERT_NO_THROW(obj->DefaultEvalMetric());
|
|
|
|
delete obj;
|
|
}
|