xgboost/src/tree/gpu_hist/row_partitioner.cuh
Rong Ou 0afcc55d98 Support multiple batches in gpu_hist (#5014)
* Initial external memory training support for GPU Hist tree method.
2019-11-16 14:50:20 +08:00

206 lines
7.6 KiB
Plaintext

/*!
* Copyright 2017-2019 XGBoost contributors
*/
#pragma once
#include "xgboost/base.h"
#include "../../common/device_helpers.cuh"
namespace xgboost {
namespace tree {
/*! \brief Count how many rows are assigned to left node. */
__forceinline__ __device__ void AtomicIncrement(int64_t* d_count, bool increment) {
#if __CUDACC_VER_MAJOR__ > 8
int mask = __activemask();
unsigned ballot = __ballot_sync(mask, increment);
int leader = __ffs(mask) - 1;
if (threadIdx.x % 32 == leader) {
atomicAdd(reinterpret_cast<unsigned long long*>(d_count), // NOLINT
static_cast<unsigned long long>(__popc(ballot))); // NOLINT
}
#else
unsigned ballot = __ballot(increment);
if (threadIdx.x % 32 == 0) {
atomicAdd(reinterpret_cast<unsigned long long*>(d_count), // NOLINT
static_cast<unsigned long long>(__popc(ballot))); // NOLINT
}
#endif
}
/** \brief Class responsible for tracking subsets of rows as we add splits and
* partition training rows into different leaf nodes. */
class RowPartitioner {
public:
using RowIndexT = bst_uint;
struct Segment;
static constexpr bst_node_t kIgnoredTreePosition = -1;
private:
int device_idx;
/*! \brief In here if you want to find the rows belong to a node nid, first you need to
* get the indices segment from ridx_segments[nid], then get the row index that
* represents position of row in input data X. `RowPartitioner::GetRows` would be a
* good starting place to get a sense what are these vector storing.
*
* node id -> segment -> indices of rows belonging to node
*/
/*! \brief Range of row index for each node, pointers into ridx below. */
std::vector<Segment> ridx_segments;
dh::caching_device_vector<RowIndexT> ridx_a;
dh::caching_device_vector<RowIndexT> ridx_b;
dh::caching_device_vector<bst_node_t> position_a;
dh::caching_device_vector<bst_node_t> position_b;
/*! \brief mapping for node id -> rows.
* This looks like:
* node id | 1 | 2 |
* rows idx | 3, 5, 1 | 13, 31 |
*/
dh::DoubleBuffer<RowIndexT> ridx;
/*! \brief mapping for row -> node id. */
dh::DoubleBuffer<bst_node_t> position;
dh::caching_device_vector<int64_t>
left_counts; // Useful to keep a bunch of zeroed memory for sort position
std::vector<cudaStream_t> streams;
public:
RowPartitioner(int device_idx, size_t num_rows);
~RowPartitioner();
RowPartitioner(const RowPartitioner&) = delete;
RowPartitioner& operator=(const RowPartitioner&) = delete;
/**
* \brief Gets the row indices of training instances in a given node.
*/
common::Span<const RowIndexT> GetRows(bst_node_t nidx);
/**
* \brief Gets all training rows in the set.
*/
common::Span<const RowIndexT> GetRows();
/**
* \brief Gets the tree position of all training instances.
*/
common::Span<const bst_node_t> GetPosition();
/**
* \brief Convenience method for testing
*/
std::vector<RowIndexT> GetRowsHost(bst_node_t nidx);
/**
* \brief Convenience method for testing
*/
std::vector<bst_node_t> GetPositionHost();
/**
* \brief Updates the tree position for set of training instances being split
* into left and right child nodes. Accepts a user-defined lambda specifying
* which branch each training instance should go down.
*
* \tparam UpdatePositionOpT
* \param nidx The index of the node being split.
* \param left_nidx The left child index.
* \param right_nidx The right child index.
* \param op Device lambda. Should provide the row index as an
* argument and return the new position for this training instance.
*/
template <typename UpdatePositionOpT>
void UpdatePosition(bst_node_t nidx, bst_node_t left_nidx,
bst_node_t right_nidx, UpdatePositionOpT op) {
dh::safe_cuda(cudaSetDevice(device_idx));
Segment segment = ridx_segments.at(nidx); // rows belongs to node nidx
auto d_ridx = ridx.CurrentSpan();
auto d_position = position.CurrentSpan();
if (left_counts.size() <= nidx) {
left_counts.resize((nidx * 2) + 1);
thrust::fill(left_counts.begin(), left_counts.end(), 0);
}
// Now we divide the row segment into left and right node.
int64_t* d_left_count = left_counts.data().get() + nidx;
// Launch 1 thread for each row
dh::LaunchN<1, 128>(device_idx, segment.Size(), [=] __device__(size_t idx) {
// LaunchN starts from zero, so we restore the row index by adding segment.begin
idx += segment.begin;
RowIndexT ridx = d_ridx[idx];
bst_node_t new_position = op(ridx); // new node id
if (new_position == kIgnoredTreePosition) return;
KERNEL_CHECK(new_position == left_nidx || new_position == right_nidx);
AtomicIncrement(d_left_count, new_position == left_nidx);
d_position[idx] = new_position;
});
// Overlap device to host memory copy (left_count) with sort
int64_t left_count;
dh::safe_cuda(cudaMemcpyAsync(&left_count, d_left_count, sizeof(int64_t),
cudaMemcpyDeviceToHost, streams[0]));
SortPositionAndCopy(segment, left_nidx, right_nidx, d_left_count,
streams[1]);
dh::safe_cuda(cudaStreamSynchronize(streams[0]));
CHECK_LE(left_count, segment.Size());
CHECK_GE(left_count, 0);
ridx_segments.resize(std::max(int(ridx_segments.size()),
std::max(left_nidx, right_nidx) + 1));
ridx_segments[left_nidx] =
Segment(segment.begin, segment.begin + left_count);
ridx_segments[right_nidx] =
Segment(segment.begin + left_count, segment.end);
}
/**
* \brief Finalise the position of all training instances after tree
* construction is complete. Does not update any other meta information in
* this data structure, so should only be used at the end of training.
*
* \param op Device lambda. Should provide the row index and current
* position as an argument and return the new position for this training
* instance.
*/
template <typename FinalisePositionOpT>
void FinalisePosition(FinalisePositionOpT op) {
auto d_position = position.Current();
const auto d_ridx = ridx.Current();
dh::LaunchN(device_idx, position.Size(), [=] __device__(size_t idx) {
auto position = d_position[idx];
RowIndexT ridx = d_ridx[idx];
bst_node_t new_position = op(ridx, position);
if (new_position == kIgnoredTreePosition) return;
d_position[idx] = new_position;
});
}
/**
* \brief Optimised routine for sorting key value pairs into left and right
* segments. Based on a single pass of exclusive scan, uses iterators to
* redirect inputs and outputs.
*/
void SortPosition(common::Span<bst_node_t> position,
common::Span<bst_node_t> position_out,
common::Span<RowIndexT> ridx,
common::Span<RowIndexT> ridx_out, bst_node_t left_nidx,
bst_node_t right_nidx, int64_t* d_left_count,
cudaStream_t stream = nullptr);
/*! \brief Sort row indices according to position. */
void SortPositionAndCopy(const Segment& segment, bst_node_t left_nidx,
bst_node_t right_nidx, int64_t* d_left_count,
cudaStream_t stream);
/** \brief Used to demarcate a contiguous set of row indices associated with
* some tree node. */
struct Segment {
size_t begin;
size_t end;
Segment() : begin{0}, end{0} {}
Segment(size_t begin, size_t end) : begin(begin), end(end) {
CHECK_GE(end, begin);
}
size_t Size() const { return end - begin; }
};
};
}; // namespace tree
}; // namespace xgboost