xgboost/src/common/survival_util.h
Andrew Ziem 3e7e426b36
Fix spelling in documents (#6948)
* Update roxygen2 doc.

Co-authored-by: fis <jm.yuan@outlook.com>
2021-05-11 20:44:36 +08:00

348 lines
12 KiB
C++

/*!
* Copyright 2019-2020 by Contributors
* \file survival_util.h
* \brief Utility functions, useful for implementing objective and metric functions for survival
* analysis
* \author Avinash Barnwal, Hyunsu Cho and Toby Hocking
*/
#ifndef XGBOOST_COMMON_SURVIVAL_UTIL_H_
#define XGBOOST_COMMON_SURVIVAL_UTIL_H_
/*
* For the derivation of the loss, gradient, and hessian for the Accelerated Failure Time model,
* refer to the paper "Survival regression with accelerated failure time model in XGBoost"
* at https://arxiv.org/abs/2006.04920.
*/
#include <xgboost/parameter.h>
#include <memory>
#include <algorithm>
#include <limits>
#include "probability_distribution.h"
DECLARE_FIELD_ENUM_CLASS(xgboost::common::ProbabilityDistributionType);
namespace xgboost {
namespace common {
#ifndef __CUDACC__
using std::log;
using std::fmax;
#endif // __CUDACC__
enum class CensoringType : uint8_t {
kUncensored, kRightCensored, kLeftCensored, kIntervalCensored
};
namespace aft {
// Allowable range for gradient and hessian. Used for regularization
constexpr double kMinGradient = -15.0;
constexpr double kMaxGradient = 15.0;
constexpr double kMinHessian = 1e-16; // Ensure that no data point gets zero hessian
constexpr double kMaxHessian = 15.0;
constexpr double kEps = 1e-12; // A denominator in a fraction should not be too small
// Clip (limit) x to fit range [x_min, x_max].
// If x < x_min, return x_min; if x > x_max, return x_max; if x_min <= x <= x_max, return x.
// This function assumes x_min < x_max; behavior is undefined if this assumption does not hold.
XGBOOST_DEVICE
inline double Clip(double x, double x_min, double x_max) {
if (x < x_min) {
return x_min;
}
if (x > x_max) {
return x_max;
}
return x;
}
template<typename Distribution>
XGBOOST_DEVICE inline double
GetLimitGradAtInfPred(CensoringType censor_type, bool sign, double sigma);
template<typename Distribution>
XGBOOST_DEVICE inline double
GetLimitHessAtInfPred(CensoringType censor_type, bool sign, double sigma);
} // namespace aft
/*! \brief Parameter structure for AFT loss and metric */
struct AFTParam : public XGBoostParameter<AFTParam> {
/*! \brief Choice of probability distribution for the noise term in AFT */
ProbabilityDistributionType aft_loss_distribution;
/*! \brief Scaling factor to be applied to the distribution */
float aft_loss_distribution_scale;
DMLC_DECLARE_PARAMETER(AFTParam) {
DMLC_DECLARE_FIELD(aft_loss_distribution)
.set_default(ProbabilityDistributionType::kNormal)
.add_enum("normal", ProbabilityDistributionType::kNormal)
.add_enum("logistic", ProbabilityDistributionType::kLogistic)
.add_enum("extreme", ProbabilityDistributionType::kExtreme)
.describe("Choice of distribution for the noise term in "
"Accelerated Failure Time model");
DMLC_DECLARE_FIELD(aft_loss_distribution_scale)
.set_default(1.0f)
.describe("Scaling factor used to scale the distribution in "
"Accelerated Failure Time model");
}
};
/*! \brief The AFT loss function */
template<typename Distribution>
struct AFTLoss {
XGBOOST_DEVICE inline static
double Loss(double y_lower, double y_upper, double y_pred, double sigma) {
const double log_y_lower = log(y_lower);
const double log_y_upper = log(y_upper);
double cost;
if (y_lower == y_upper) { // uncensored
const double z = (log_y_lower - y_pred) / sigma;
const double pdf = Distribution::PDF(z);
// Regularize the denominator with eps, to avoid INF or NAN
cost = -log(fmax(pdf / (sigma * y_lower), aft::kEps));
} else { // censored; now check what type of censorship we have
double z_u, z_l, cdf_u, cdf_l;
if (isinf(y_upper)) { // right-censored
cdf_u = 1;
} else { // left-censored or interval-censored
z_u = (log_y_upper - y_pred) / sigma;
cdf_u = Distribution::CDF(z_u);
}
if (y_lower <= 0.0) { // left-censored
cdf_l = 0;
} else { // right-censored or interval-censored
z_l = (log_y_lower - y_pred) / sigma;
cdf_l = Distribution::CDF(z_l);
}
// Regularize the denominator with eps, to avoid INF or NAN
cost = -log(fmax(cdf_u - cdf_l, aft::kEps));
}
return cost;
}
XGBOOST_DEVICE inline static
double Gradient(double y_lower, double y_upper, double y_pred, double sigma) {
const double log_y_lower = log(y_lower);
const double log_y_upper = log(y_upper);
double numerator, denominator, gradient; // numerator and denominator of gradient
CensoringType censor_type;
bool z_sign; // sign of z-score
if (y_lower == y_upper) { // uncensored
const double z = (log_y_lower - y_pred) / sigma;
const double pdf = Distribution::PDF(z);
const double grad_pdf = Distribution::GradPDF(z);
censor_type = CensoringType::kUncensored;
numerator = grad_pdf;
denominator = sigma * pdf;
z_sign = (z > 0);
} else { // censored; now check what type of censorship we have
double z_u = 0.0, z_l = 0.0, pdf_u, pdf_l, cdf_u, cdf_l;
censor_type = CensoringType::kIntervalCensored;
if (isinf(y_upper)) { // right-censored
pdf_u = 0;
cdf_u = 1;
censor_type = CensoringType::kRightCensored;
} else { // interval-censored or left-censored
z_u = (log_y_upper - y_pred) / sigma;
pdf_u = Distribution::PDF(z_u);
cdf_u = Distribution::CDF(z_u);
}
if (y_lower <= 0.0) { // left-censored
pdf_l = 0;
cdf_l = 0;
censor_type = CensoringType::kLeftCensored;
} else { // interval-censored or right-censored
z_l = (log_y_lower - y_pred) / sigma;
pdf_l = Distribution::PDF(z_l);
cdf_l = Distribution::CDF(z_l);
}
z_sign = (z_u > 0 || z_l > 0);
numerator = pdf_u - pdf_l;
denominator = sigma * (cdf_u - cdf_l);
}
gradient = numerator / denominator;
if (denominator < aft::kEps && (isnan(gradient) || isinf(gradient))) {
gradient = aft::GetLimitGradAtInfPred<Distribution>(censor_type, z_sign, sigma);
}
return aft::Clip(gradient, aft::kMinGradient, aft::kMaxGradient);
}
XGBOOST_DEVICE inline static
double Hessian(double y_lower, double y_upper, double y_pred, double sigma) {
const double log_y_lower = log(y_lower);
const double log_y_upper = log(y_upper);
double numerator, denominator, hessian; // numerator and denominator of hessian
CensoringType censor_type;
bool z_sign; // sign of z-score
if (y_lower == y_upper) { // uncensored
const double z = (log_y_lower - y_pred) / sigma;
const double pdf = Distribution::PDF(z);
const double grad_pdf = Distribution::GradPDF(z);
const double hess_pdf = Distribution::HessPDF(z);
censor_type = CensoringType::kUncensored;
numerator = -(pdf * hess_pdf - grad_pdf * grad_pdf);
denominator = sigma * sigma * pdf * pdf;
z_sign = (z > 0);
} else { // censored; now check what type of censorship we have
double z_u = 0.0, z_l = 0.0, grad_pdf_u, grad_pdf_l, pdf_u, pdf_l, cdf_u, cdf_l;
censor_type = CensoringType::kIntervalCensored;
if (isinf(y_upper)) { // right-censored
pdf_u = 0;
cdf_u = 1;
grad_pdf_u = 0;
censor_type = CensoringType::kRightCensored;
} else { // interval-censored or left-censored
z_u = (log_y_upper - y_pred) / sigma;
pdf_u = Distribution::PDF(z_u);
cdf_u = Distribution::CDF(z_u);
grad_pdf_u = Distribution::GradPDF(z_u);
}
if (y_lower <= 0.0) { // left-censored
pdf_l = 0;
cdf_l = 0;
grad_pdf_l = 0;
censor_type = CensoringType::kLeftCensored;
} else { // interval-censored or right-censored
z_l = (log_y_lower - y_pred) / sigma;
pdf_l = Distribution::PDF(z_l);
cdf_l = Distribution::CDF(z_l);
grad_pdf_l = Distribution::GradPDF(z_l);
}
const double cdf_diff = cdf_u - cdf_l;
const double pdf_diff = pdf_u - pdf_l;
const double grad_diff = grad_pdf_u - grad_pdf_l;
const double sqrt_denominator = sigma * cdf_diff;
z_sign = (z_u > 0 || z_l > 0);
numerator = -(cdf_diff * grad_diff - pdf_diff * pdf_diff);
denominator = sqrt_denominator * sqrt_denominator;
}
hessian = numerator / denominator;
if (denominator < aft::kEps && (isnan(hessian) || isinf(hessian))) {
hessian = aft::GetLimitHessAtInfPred<Distribution>(censor_type, z_sign, sigma);
}
return aft::Clip(hessian, aft::kMinHessian, aft::kMaxHessian);
}
};
namespace aft {
template <>
XGBOOST_DEVICE inline double
GetLimitGradAtInfPred<NormalDistribution>(CensoringType censor_type, bool sign, double sigma) {
// Remove unused parameter compiler warning.
(void) sigma;
switch (censor_type) {
case CensoringType::kUncensored:
return sign ? kMinGradient : kMaxGradient;
case CensoringType::kRightCensored:
return sign ? kMinGradient : 0.0;
case CensoringType::kLeftCensored:
return sign ? 0.0 : kMaxGradient;
case CensoringType::kIntervalCensored:
return sign ? kMinGradient : kMaxGradient;
}
return std::numeric_limits<double>::quiet_NaN();
}
template <>
XGBOOST_DEVICE inline double
GetLimitHessAtInfPred<NormalDistribution>(CensoringType censor_type, bool sign, double sigma) {
switch (censor_type) {
case CensoringType::kUncensored:
return 1.0 / (sigma * sigma);
case CensoringType::kRightCensored:
return sign ? (1.0 / (sigma * sigma)) : kMinHessian;
case CensoringType::kLeftCensored:
return sign ? kMinHessian : (1.0 / (sigma * sigma));
case CensoringType::kIntervalCensored:
return 1.0 / (sigma * sigma);
}
return std::numeric_limits<double>::quiet_NaN();
}
template <>
XGBOOST_DEVICE inline double
GetLimitGradAtInfPred<LogisticDistribution>(CensoringType censor_type, bool sign, double sigma) {
switch (censor_type) {
case CensoringType::kUncensored:
return sign ? (-1.0 / sigma) : (1.0 / sigma);
case CensoringType::kRightCensored:
return sign ? (-1.0 / sigma) : 0.0;
case CensoringType::kLeftCensored:
return sign ? 0.0 : (1.0 / sigma);
case CensoringType::kIntervalCensored:
return sign ? (-1.0 / sigma) : (1.0 / sigma);
}
return std::numeric_limits<double>::quiet_NaN();
}
template <>
XGBOOST_DEVICE inline double
GetLimitHessAtInfPred<LogisticDistribution>(CensoringType censor_type, bool sign, double sigma) {
// Remove unused parameter compiler warning.
(void) sign;
(void) sigma;
switch (censor_type) {
case CensoringType::kUncensored:
case CensoringType::kRightCensored:
case CensoringType::kLeftCensored:
case CensoringType::kIntervalCensored:
return kMinHessian;
}
return std::numeric_limits<double>::quiet_NaN();
}
template <>
XGBOOST_DEVICE inline double
GetLimitGradAtInfPred<ExtremeDistribution>(CensoringType censor_type, bool sign, double sigma) {
switch (censor_type) {
case CensoringType::kUncensored:
return sign ? kMinGradient : (1.0 / sigma);
case CensoringType::kRightCensored:
return sign ? kMinGradient : 0.0;
case CensoringType::kLeftCensored:
return sign ? 0.0 : (1.0 / sigma);
case CensoringType::kIntervalCensored:
return sign ? kMinGradient : (1.0 / sigma);
}
return std::numeric_limits<double>::quiet_NaN();
}
template <>
XGBOOST_DEVICE inline double
GetLimitHessAtInfPred<ExtremeDistribution>(CensoringType censor_type, bool sign, double sigma) {
// Remove unused parameter compiler warning.
(void) sigma;
switch (censor_type) {
case CensoringType::kUncensored:
case CensoringType::kRightCensored:
return sign ? kMaxHessian : kMinHessian;
case CensoringType::kLeftCensored:
return kMinHessian;
case CensoringType::kIntervalCensored:
return sign ? kMaxHessian : kMinHessian;
}
return std::numeric_limits<double>::quiet_NaN();
}
} // namespace aft
} // namespace common
} // namespace xgboost
#endif // XGBOOST_COMMON_SURVIVAL_UTIL_H_