xgboost/src/linear/updater_gpu_coordinate.cu
Jiaming Yuan 095de3bf5f
Export c++ headers in CMake installation. (#4897)
* Move get transpose into cc.

* Clean up headers in host device vector, remove thrust dependency.

* Move span and host device vector into public.

* Install c++ headers.

* Short notes for c and c++.

Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2019-10-06 23:53:09 -04:00

249 lines
8.9 KiB
Plaintext

/*!
* Copyright 2018 by Contributors
* \author Rory Mitchell
*/
#include <thrust/execution_policy.h>
#include <thrust/inner_product.h>
#include <xgboost/data.h>
#include <xgboost/linear_updater.h>
#include "xgboost/span.h"
#include "coordinate_common.h"
#include "../common/common.h"
#include "../common/device_helpers.cuh"
#include "../common/timer.h"
#include "./param.h"
namespace xgboost {
namespace linear {
DMLC_REGISTRY_FILE_TAG(updater_gpu_coordinate);
/**
* \class GPUCoordinateUpdater
*
* \brief Coordinate descent algorithm that updates one feature per iteration
*/
class GPUCoordinateUpdater : public LinearUpdater { // NOLINT
public:
~GPUCoordinateUpdater() { // NOLINT
if (learner_param_->gpu_id >= 0) {
dh::safe_cuda(cudaSetDevice(learner_param_->gpu_id));
}
}
// set training parameter
void Configure(Args const& args) override {
tparam_.InitAllowUnknown(args);
selector_.reset(FeatureSelector::Create(tparam_.feature_selector));
monitor_.Init("GPUCoordinateUpdater");
}
void LazyInitDevice(DMatrix *p_fmat, const gbm::GBLinearModelParam &model_param) {
if (learner_param_->gpu_id < 0) return;
num_row_ = static_cast<size_t>(p_fmat->Info().num_row_);
CHECK(p_fmat->SingleColBlock());
SparsePage const& batch = *(p_fmat->GetBatches<CSCPage>().begin());
if ( IsEmpty() ) { return; }
dh::safe_cuda(cudaSetDevice(learner_param_->gpu_id));
// The begin and end indices for the section of each column associated with
// this device
std::vector<std::pair<bst_uint, bst_uint>> column_segments;
row_ptr_ = {0};
// iterate through columns
for (size_t fidx = 0; fidx < batch.Size(); fidx++) {
common::Span<Entry const> col = batch[fidx];
auto cmp = [](Entry e1, Entry e2) {
return e1.index < e2.index;
};
auto column_begin =
std::lower_bound(col.cbegin(), col.cend(),
xgboost::Entry(0, 0.0f), cmp);
auto column_end =
std::lower_bound(col.cbegin(), col.cend(),
xgboost::Entry(num_row_, 0.0f), cmp);
column_segments.emplace_back(
std::make_pair(column_begin - col.cbegin(), column_end - col.cbegin()));
row_ptr_.push_back(row_ptr_.back() + (column_end - column_begin));
}
ba_.Allocate(learner_param_->gpu_id, &data_, row_ptr_.back(), &gpair_,
num_row_ * model_param.num_output_group);
for (size_t fidx = 0; fidx < batch.Size(); fidx++) {
auto col = batch[fidx];
auto seg = column_segments[fidx];
dh::safe_cuda(cudaMemcpy(
data_.subspan(row_ptr_[fidx]).data(),
col.data() + seg.first,
sizeof(Entry) * (seg.second - seg.first), cudaMemcpyHostToDevice));
}
}
void Update(HostDeviceVector<GradientPair> *in_gpair, DMatrix *p_fmat,
gbm::GBLinearModel *model, double sum_instance_weight) override {
tparam_.DenormalizePenalties(sum_instance_weight);
monitor_.Start("LazyInitDevice");
this->LazyInitDevice(p_fmat, model->param);
monitor_.Stop("LazyInitDevice");
monitor_.Start("UpdateGpair");
auto &in_gpair_host = in_gpair->ConstHostVector();
// Update gpair
if (learner_param_->gpu_id >= 0) {
this->UpdateGpair(in_gpair_host, model->param);
}
monitor_.Stop("UpdateGpair");
monitor_.Start("UpdateBias");
this->UpdateBias(p_fmat, model);
monitor_.Stop("UpdateBias");
// prepare for updating the weights
selector_->Setup(*model, in_gpair->ConstHostVector(), p_fmat,
tparam_.reg_alpha_denorm, tparam_.reg_lambda_denorm,
coord_param_.top_k);
monitor_.Start("UpdateFeature");
for (auto group_idx = 0; group_idx < model->param.num_output_group; ++group_idx) {
for (auto i = 0U; i < model->param.num_feature; i++) {
auto fidx = selector_->NextFeature(
i, *model, group_idx, in_gpair->ConstHostVector(), p_fmat,
tparam_.reg_alpha_denorm, tparam_.reg_lambda_denorm);
if (fidx < 0) break;
this->UpdateFeature(fidx, group_idx, &in_gpair->HostVector(), model);
}
}
monitor_.Stop("UpdateFeature");
}
void UpdateBias(DMatrix *p_fmat, gbm::GBLinearModel *model) {
for (int group_idx = 0; group_idx < model->param.num_output_group; ++group_idx) {
// Get gradient
auto grad = GradientPair(0, 0);
if (learner_param_->gpu_id >= 0) {
grad = GetBiasGradient(group_idx, model->param.num_output_group);
}
auto dbias = static_cast<float>(
tparam_.learning_rate *
CoordinateDeltaBias(grad.GetGrad(), grad.GetHess()));
model->bias()[group_idx] += dbias;
// Update residual
if (learner_param_->gpu_id >= 0) {
UpdateBiasResidual(dbias, group_idx, model->param.num_output_group);
}
}
}
void UpdateFeature(int fidx, int group_idx,
std::vector<GradientPair> *in_gpair,
gbm::GBLinearModel *model) {
bst_float &w = (*model)[fidx][group_idx];
// Get gradient
auto grad = GradientPair(0, 0);
if (learner_param_->gpu_id >= 0) {
grad = GetGradient(group_idx, model->param.num_output_group, fidx);
}
auto dw = static_cast<float>(tparam_.learning_rate *
CoordinateDelta(grad.GetGrad(), grad.GetHess(),
w, tparam_.reg_alpha_denorm,
tparam_.reg_lambda_denorm));
w += dw;
if (learner_param_->gpu_id >= 0) {
UpdateResidual(dw, group_idx, model->param.num_output_group, fidx);
}
}
// This needs to be public because of the __device__ lambda.
GradientPair GetBiasGradient(int group_idx, int num_group) {
dh::safe_cuda(cudaSetDevice(learner_param_->gpu_id));
auto counting = thrust::make_counting_iterator(0ull);
auto f = [=] __device__(size_t idx) {
return idx * num_group + group_idx;
}; // NOLINT
thrust::transform_iterator<decltype(f), decltype(counting), size_t> skip(
counting, f);
auto perm = thrust::make_permutation_iterator(gpair_.data(), skip);
return dh::SumReduction(temp_, perm, num_row_);
}
// This needs to be public because of the __device__ lambda.
void UpdateBiasResidual(float dbias, int group_idx, int num_groups) {
if (dbias == 0.0f) return;
auto d_gpair = gpair_;
dh::LaunchN(learner_param_->gpu_id, num_row_, [=] __device__(size_t idx) {
auto &g = d_gpair[idx * num_groups + group_idx];
g += GradientPair(g.GetHess() * dbias, 0);
});
}
// This needs to be public because of the __device__ lambda.
GradientPair GetGradient(int group_idx, int num_group, int fidx) {
dh::safe_cuda(cudaSetDevice(learner_param_->gpu_id));
common::Span<xgboost::Entry> d_col = data_.subspan(row_ptr_[fidx]);
size_t col_size = row_ptr_[fidx + 1] - row_ptr_[fidx];
common::Span<GradientPair> d_gpair = gpair_;
auto counting = thrust::make_counting_iterator(0ull);
auto f = [=] __device__(size_t idx) {
auto entry = d_col[idx];
auto g = d_gpair[entry.index * num_group + group_idx];
return GradientPair(g.GetGrad() * entry.fvalue,
g.GetHess() * entry.fvalue * entry.fvalue);
}; // NOLINT
thrust::transform_iterator<decltype(f), decltype(counting), GradientPair>
multiply_iterator(counting, f);
return dh::SumReduction(temp_, multiply_iterator, col_size);
}
// This needs to be public because of the __device__ lambda.
void UpdateResidual(float dw, int group_idx, int num_groups, int fidx) {
common::Span<GradientPair> d_gpair = gpair_;
common::Span<Entry> d_col = data_.subspan(row_ptr_[fidx]);
size_t col_size = row_ptr_[fidx + 1] - row_ptr_[fidx];
dh::LaunchN(learner_param_->gpu_id, col_size, [=] __device__(size_t idx) {
auto entry = d_col[idx];
auto &g = d_gpair[entry.index * num_groups + group_idx];
g += GradientPair(g.GetHess() * dw * entry.fvalue, 0);
});
}
private:
bool IsEmpty() {
return num_row_ == 0;
}
void UpdateGpair(const std::vector<GradientPair> &host_gpair,
const gbm::GBLinearModelParam &model_param) {
dh::safe_cuda(cudaMemcpyAsync(
gpair_.data(),
host_gpair.data(),
gpair_.size() * sizeof(GradientPair), cudaMemcpyHostToDevice));
}
// training parameter
LinearTrainParam tparam_;
CoordinateParam coord_param_;
std::unique_ptr<FeatureSelector> selector_;
common::Monitor monitor_;
dh::BulkAllocator ba_;
std::vector<size_t> row_ptr_;
common::Span<xgboost::Entry> data_;
common::Span<GradientPair> gpair_;
dh::CubMemory temp_;
size_t num_row_;
};
XGBOOST_REGISTER_LINEAR_UPDATER(GPUCoordinateUpdater, "gpu_coord_descent")
.describe(
"Update linear model according to coordinate descent algorithm. GPU "
"accelerated.")
.set_body([]() { return new GPUCoordinateUpdater(); });
} // namespace linear
} // namespace xgboost