* Convert federated learner test into test suite. - Add specialization to learning to rank.
121 lines
3.8 KiB
C++
121 lines
3.8 KiB
C++
/*!
|
|
* Copyright 2023 XGBoost contributors
|
|
*/
|
|
#include <dmlc/parameter.h>
|
|
#include <gtest/gtest.h>
|
|
#include <xgboost/data.h>
|
|
#include <xgboost/objective.h>
|
|
|
|
#include "../../../plugin/federated/federated_server.h"
|
|
#include "../../../src/collective/communicator-inl.h"
|
|
#include "../../../src/common/linalg_op.h"
|
|
#include "../helpers.h"
|
|
#include "../objective_helpers.h" // for MakeObjNamesForTest, ObjTestNameGenerator
|
|
#include "helpers.h"
|
|
|
|
namespace xgboost {
|
|
namespace {
|
|
auto MakeModel(std::string objective, std::shared_ptr<DMatrix> dmat) {
|
|
std::unique_ptr<Learner> learner{Learner::Create({dmat})};
|
|
learner->SetParam("tree_method", "approx");
|
|
learner->SetParam("objective", objective);
|
|
if (objective.find("quantile") != std::string::npos) {
|
|
learner->SetParam("quantile_alpha", "0.5");
|
|
}
|
|
if (objective.find("multi") != std::string::npos) {
|
|
learner->SetParam("num_class", "3");
|
|
}
|
|
learner->UpdateOneIter(0, dmat);
|
|
Json config{Object{}};
|
|
learner->SaveConfig(&config);
|
|
|
|
Json model{Object{}};
|
|
learner->SaveModel(&model);
|
|
return model;
|
|
}
|
|
|
|
void VerifyObjective(size_t rows, size_t cols, float expected_base_score, Json expected_model,
|
|
std::string objective) {
|
|
auto const world_size = collective::GetWorldSize();
|
|
auto const rank = collective::GetRank();
|
|
std::shared_ptr<DMatrix> dmat{RandomDataGenerator{rows, cols, 0}.GenerateDMatrix(rank == 0)};
|
|
|
|
if (rank == 0) {
|
|
auto &h_upper = dmat->Info().labels_upper_bound_.HostVector();
|
|
auto &h_lower = dmat->Info().labels_lower_bound_.HostVector();
|
|
h_lower.resize(rows);
|
|
h_upper.resize(rows);
|
|
for (size_t i = 0; i < rows; ++i) {
|
|
h_lower[i] = 1;
|
|
h_upper[i] = 10;
|
|
}
|
|
|
|
if (objective.find("rank:") != std::string::npos) {
|
|
auto h_label = dmat->Info().labels.HostView();
|
|
std::size_t k = 0;
|
|
for (auto &v : h_label) {
|
|
v = k % 2 == 0;
|
|
++k;
|
|
}
|
|
}
|
|
}
|
|
std::shared_ptr<DMatrix> sliced{dmat->SliceCol(world_size, rank)};
|
|
|
|
auto model = MakeModel(objective, sliced);
|
|
auto base_score = GetBaseScore(model);
|
|
ASSERT_EQ(base_score, expected_base_score);
|
|
ASSERT_EQ(model, expected_model);
|
|
}
|
|
} // namespace
|
|
|
|
class FederatedLearnerTest : public ::testing::TestWithParam<std::string> {
|
|
std::unique_ptr<ServerForTest> server_;
|
|
static int const kWorldSize{3};
|
|
|
|
protected:
|
|
void SetUp() override { server_ = std::make_unique<ServerForTest>(kWorldSize); }
|
|
void TearDown() override { server_.reset(nullptr); }
|
|
|
|
void Run(std::string objective) {
|
|
static auto constexpr kRows{16};
|
|
static auto constexpr kCols{16};
|
|
|
|
std::shared_ptr<DMatrix> dmat{RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(true)};
|
|
|
|
auto &h_upper = dmat->Info().labels_upper_bound_.HostVector();
|
|
auto &h_lower = dmat->Info().labels_lower_bound_.HostVector();
|
|
h_lower.resize(kRows);
|
|
h_upper.resize(kRows);
|
|
for (size_t i = 0; i < kRows; ++i) {
|
|
h_lower[i] = 1;
|
|
h_upper[i] = 10;
|
|
}
|
|
if (objective.find("rank:") != std::string::npos) {
|
|
auto h_label = dmat->Info().labels.HostView();
|
|
std::size_t k = 0;
|
|
for (auto &v : h_label) {
|
|
v = k % 2 == 0;
|
|
++k;
|
|
}
|
|
}
|
|
|
|
auto model = MakeModel(objective, dmat);
|
|
auto score = GetBaseScore(model);
|
|
|
|
RunWithFederatedCommunicator(kWorldSize, server_->Address(), &VerifyObjective, kRows, kCols,
|
|
score, model, objective);
|
|
}
|
|
};
|
|
|
|
TEST_P(FederatedLearnerTest, Objective) {
|
|
std::string objective = GetParam();
|
|
this->Run(objective);
|
|
}
|
|
|
|
INSTANTIATE_TEST_SUITE_P(FederatedLearnerObjective, FederatedLearnerTest,
|
|
::testing::ValuesIn(MakeObjNamesForTest()),
|
|
[](const ::testing::TestParamInfo<FederatedLearnerTest::ParamType> &info) {
|
|
return ObjTestNameGenerator(info);
|
|
});
|
|
} // namespace xgboost
|