122 lines
4.6 KiB
Python
Executable File
122 lines
4.6 KiB
Python
Executable File
#!/usr/bin/python
|
|
import sys
|
|
import numpy as np
|
|
import scipy.sparse
|
|
# append the path to xgboost, you may need to change the following line
|
|
# alternatively, you can add the path to PYTHONPATH environment variable
|
|
sys.path.append('../')
|
|
import xgboost as xgb
|
|
|
|
### simple example
|
|
# load file from text file, also binary buffer generated by xgboost
|
|
dtrain = xgb.DMatrix('agaricus.txt.train')
|
|
dtest = xgb.DMatrix('agaricus.txt.test')
|
|
|
|
# specify parameters via map, definition are same as c++ version
|
|
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' }
|
|
|
|
# specify validations set to watch performance
|
|
evallist = [(dtest,'eval'), (dtrain,'train')]
|
|
num_round = 2
|
|
bst = xgb.train(param, dtrain, num_round, evallist)
|
|
|
|
# this is prediction
|
|
preds = bst.predict(dtest)
|
|
labels = dtest.get_label()
|
|
print ('error=%f' % ( sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) /float(len(preds))))
|
|
bst.save_model('0001.model')
|
|
# dump model
|
|
bst.dump_model('dump.raw.txt')
|
|
# dump model with feature map
|
|
bst.dump_model('dump.nice.txt','featmap.txt')
|
|
|
|
# save dmatrix into binary buffer
|
|
dtest.save_binary('dtest.buffer')
|
|
bst.save_model('xgb.model')
|
|
# load model and data in
|
|
bst2 = xgb.Booster(model_file='xgb.model')
|
|
dtest2 = xgb.DMatrix('dtest.buffer')
|
|
preds2 = bst2.predict(dtest2)
|
|
# assert they are the same
|
|
assert np.sum(np.abs(preds2-preds)) == 0
|
|
|
|
###
|
|
# build dmatrix from scipy.sparse
|
|
print ('start running example of build DMatrix from scipy.sparse')
|
|
labels = []
|
|
row = []; col = []; dat = []
|
|
i = 0
|
|
for l in open('agaricus.txt.train'):
|
|
arr = l.split()
|
|
labels.append( int(arr[0]))
|
|
for it in arr[1:]:
|
|
k,v = it.split(':')
|
|
row.append(i); col.append(int(k)); dat.append(float(v))
|
|
i += 1
|
|
csr = scipy.sparse.csr_matrix( (dat, (row,col)) )
|
|
dtrain = xgb.DMatrix( csr )
|
|
dtrain.set_label(labels)
|
|
evallist = [(dtest,'eval'), (dtrain,'train')]
|
|
bst = xgb.train( param, dtrain, num_round, evallist )
|
|
|
|
print ('start running example of build DMatrix from numpy array')
|
|
# NOTE: npymat is numpy array, we will convert it into scipy.sparse.csr_matrix in internal implementation,then convert to DMatrix
|
|
npymat = csr.todense()
|
|
dtrain = xgb.DMatrix( npymat)
|
|
dtrain.set_label(labels)
|
|
evallist = [(dtest,'eval'), (dtrain,'train')]
|
|
bst = xgb.train( param, dtrain, num_round, evallist )
|
|
|
|
###
|
|
# advanced: cutomsized loss function
|
|
#
|
|
print ('start running example to used cutomized objective function')
|
|
|
|
# note: for customized objective function, we leave objective as default
|
|
# note: what we are getting is margin value in prediction
|
|
# you must know what you are doing
|
|
param = {'max_depth':2, 'eta':1, 'silent':1 }
|
|
|
|
# user define objective function, given prediction, return gradient and second order gradient
|
|
# this is loglikelihood loss
|
|
def logregobj(preds, dtrain):
|
|
labels = dtrain.get_label()
|
|
preds = 1.0 / (1.0 + np.exp(-preds))
|
|
grad = preds - labels
|
|
hess = preds * (1.0-preds)
|
|
return grad, hess
|
|
|
|
# user defined evaluation function, return a pair metric_name, result
|
|
# NOTE: when you do customized loss function, the default prediction value is margin
|
|
# this may make buildin evalution metric not function properly
|
|
# for example, we are doing logistic loss, the prediction is score before logistic transformation
|
|
# the buildin evaluation error assumes input is after logistic transformation
|
|
# Take this in mind when you use the customization, and maybe you need write customized evaluation function
|
|
def evalerror(preds, dtrain):
|
|
labels = dtrain.get_label()
|
|
# return a pair metric_name, result
|
|
# since preds are margin(before logistic transformation, cutoff at 0)
|
|
return 'error', float(sum(labels != (preds > 0.0))) / len(labels)
|
|
|
|
# training with customized objective, we can also do step by step training
|
|
# simply look at xgboost.py's implementation of train
|
|
bst = xgb.train(param, dtrain, num_round, evallist, logregobj, evalerror)
|
|
|
|
###
|
|
# advanced: start from a initial base prediction
|
|
#
|
|
print ('start running example to start from a initial prediction')
|
|
# specify parameters via map, definition are same as c++ version
|
|
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' }
|
|
# train xgboost for 1 round
|
|
bst = xgb.train( param, dtrain, 1, evallist )
|
|
# Note: we need the margin value instead of transformed prediction in set_base_margin
|
|
# do predict with output_margin=True, will always give you margin values before logistic transformation
|
|
ptrain = bst.predict(dtrain, output_margin=True)
|
|
ptest = bst.predict(dtest, output_margin=True)
|
|
dtrain.set_base_margin(ptrain)
|
|
dtest.set_base_margin(ptest)
|
|
|
|
print ('this is result of running from initial prediction')
|
|
bst = xgb.train( param, dtrain, 1, evallist )
|