* Implement GK sketching on GPU. * Strong tests on quantile building. * Handle sparse dataset by binary searching the column index. * Hypothesis test on dask.
213 lines
8.3 KiB
Python
213 lines
8.3 KiB
Python
import sys
|
|
import os
|
|
import pytest
|
|
import numpy as np
|
|
import unittest
|
|
import xgboost
|
|
import subprocess
|
|
from hypothesis import given, strategies, settings, note
|
|
from test_gpu_updaters import parameter_strategy
|
|
|
|
if sys.platform.startswith("win"):
|
|
pytest.skip("Skipping dask tests on Windows", allow_module_level=True)
|
|
|
|
sys.path.append("tests/python")
|
|
from test_with_dask import run_empty_dmatrix # noqa
|
|
from test_with_dask import generate_array # noqa
|
|
import testing as tm # noqa
|
|
|
|
|
|
try:
|
|
import dask.dataframe as dd
|
|
from xgboost import dask as dxgb
|
|
from dask_cuda import LocalCUDACluster
|
|
from dask.distributed import Client
|
|
from dask import array as da
|
|
import cudf
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
class TestDistributedGPU(unittest.TestCase):
|
|
@pytest.mark.skipif(**tm.no_dask())
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
@pytest.mark.skipif(**tm.no_dask_cudf())
|
|
@pytest.mark.skipif(**tm.no_dask_cuda())
|
|
@pytest.mark.mgpu
|
|
def test_dask_dataframe(self):
|
|
with LocalCUDACluster() as cluster:
|
|
with Client(cluster) as client:
|
|
import cupy as cp
|
|
cp.cuda.runtime.setDevice(0)
|
|
X, y = generate_array()
|
|
|
|
X = dd.from_dask_array(X)
|
|
y = dd.from_dask_array(y)
|
|
|
|
X = X.map_partitions(cudf.from_pandas)
|
|
y = y.map_partitions(cudf.from_pandas)
|
|
|
|
dtrain = dxgb.DaskDMatrix(client, X, y)
|
|
out = dxgb.train(client, {'tree_method': 'gpu_hist',
|
|
'debug_synchronize': True},
|
|
dtrain=dtrain,
|
|
evals=[(dtrain, 'X')],
|
|
num_boost_round=4)
|
|
|
|
assert isinstance(out['booster'], dxgb.Booster)
|
|
assert len(out['history']['X']['rmse']) == 4
|
|
|
|
predictions = dxgb.predict(client, out, dtrain).compute()
|
|
assert isinstance(predictions, np.ndarray)
|
|
|
|
series_predictions = dxgb.inplace_predict(client, out, X)
|
|
assert isinstance(series_predictions, dd.Series)
|
|
series_predictions = series_predictions.compute()
|
|
|
|
single_node = out['booster'].predict(
|
|
xgboost.DMatrix(X.compute()))
|
|
|
|
cp.testing.assert_allclose(single_node, predictions)
|
|
np.testing.assert_allclose(single_node,
|
|
series_predictions.to_array())
|
|
|
|
predt = dxgb.predict(client, out, X)
|
|
assert isinstance(predt, dd.Series)
|
|
|
|
def is_df(part):
|
|
assert isinstance(part, cudf.DataFrame), part
|
|
return part
|
|
|
|
predt.map_partitions(
|
|
is_df,
|
|
meta=dd.utils.make_meta({'prediction': 'f4'}))
|
|
|
|
cp.testing.assert_allclose(
|
|
predt.values.compute(), single_node)
|
|
|
|
@given(parameter_strategy, strategies.integers(1, 20),
|
|
tm.dataset_strategy)
|
|
@settings(deadline=None)
|
|
@pytest.mark.mgpu
|
|
def test_gpu_hist(self, params, num_rounds, dataset):
|
|
with LocalCUDACluster(n_workers=2) as cluster:
|
|
with Client(cluster) as client:
|
|
params['tree_method'] = 'gpu_hist'
|
|
params = dataset.set_params(params)
|
|
# multi class doesn't handle empty dataset well (empty
|
|
# means at least 1 worker has data).
|
|
if params['objective'] == "multi:softmax":
|
|
return
|
|
# It doesn't make sense to distribute a completely
|
|
# empty dataset.
|
|
if dataset.X.shape[0] == 0:
|
|
return
|
|
|
|
chunk = 128
|
|
X = da.from_array(dataset.X,
|
|
chunks=(chunk, dataset.X.shape[1]))
|
|
y = da.from_array(dataset.y, chunks=(chunk, ))
|
|
if dataset.w is not None:
|
|
w = da.from_array(dataset.w, chunks=(chunk, ))
|
|
else:
|
|
w = None
|
|
|
|
m = dxgb.DaskDMatrix(
|
|
client, data=X, label=y, weight=w)
|
|
history = dxgb.train(client, params=params, dtrain=m,
|
|
num_boost_round=num_rounds,
|
|
evals=[(m, 'train')])['history']
|
|
note(history)
|
|
assert tm.non_increasing(history['train'][dataset.metric])
|
|
|
|
@pytest.mark.skipif(**tm.no_cupy())
|
|
@pytest.mark.mgpu
|
|
def test_dask_array(self):
|
|
with LocalCUDACluster() as cluster:
|
|
with Client(cluster) as client:
|
|
import cupy as cp
|
|
cp.cuda.runtime.setDevice(0)
|
|
X, y = generate_array()
|
|
|
|
X = X.map_blocks(cp.asarray)
|
|
y = y.map_blocks(cp.asarray)
|
|
dtrain = dxgb.DaskDMatrix(client, X, y)
|
|
out = dxgb.train(client, {'tree_method': 'gpu_hist',
|
|
'debug_synchronize': True},
|
|
dtrain=dtrain,
|
|
evals=[(dtrain, 'X')],
|
|
num_boost_round=2)
|
|
from_dmatrix = dxgb.predict(client, out, dtrain).compute()
|
|
inplace_predictions = dxgb.inplace_predict(
|
|
client, out, X).compute()
|
|
single_node = out['booster'].predict(
|
|
xgboost.DMatrix(X.compute()))
|
|
np.testing.assert_allclose(single_node, from_dmatrix)
|
|
device = cp.cuda.runtime.getDevice()
|
|
assert device == inplace_predictions.device.id
|
|
single_node = cp.array(single_node)
|
|
assert device == single_node.device.id
|
|
cp.testing.assert_allclose(
|
|
single_node,
|
|
inplace_predictions)
|
|
|
|
@pytest.mark.skipif(**tm.no_dask())
|
|
@pytest.mark.skipif(**tm.no_dask_cuda())
|
|
@pytest.mark.mgpu
|
|
def test_empty_dmatrix(self):
|
|
with LocalCUDACluster() as cluster:
|
|
with Client(cluster) as client:
|
|
parameters = {'tree_method': 'gpu_hist',
|
|
'debug_synchronize': True}
|
|
run_empty_dmatrix(client, parameters)
|
|
|
|
def run_quantile(self, name):
|
|
if sys.platform.startswith("win"):
|
|
pytest.skip("Skipping dask tests on Windows")
|
|
|
|
exe = None
|
|
for possible_path in {'./testxgboost', './build/testxgboost',
|
|
'../build/testxgboost', '../gpu-build/testxgboost'}:
|
|
if os.path.exists(possible_path):
|
|
exe = possible_path
|
|
assert exe, 'No testxgboost executable found.'
|
|
test = "--gtest_filter=GPUQuantile." + name
|
|
|
|
def runit(worker_addr, rabit_args):
|
|
port = None
|
|
# setup environment for running the c++ part.
|
|
for arg in rabit_args:
|
|
if arg.decode('utf-8').startswith('DMLC_TRACKER_PORT'):
|
|
port = arg.decode('utf-8')
|
|
port = port.split('=')
|
|
env = os.environ.copy()
|
|
env[port[0]] = port[1]
|
|
return subprocess.run([exe, test], env=env, stdout=subprocess.PIPE)
|
|
|
|
with LocalCUDACluster() as cluster:
|
|
with Client(cluster) as client:
|
|
workers = list(dxgb._get_client_workers(client).keys())
|
|
rabit_args = dxgb._get_rabit_args(workers, client)
|
|
futures = client.map(runit,
|
|
workers,
|
|
pure=False,
|
|
workers=workers,
|
|
rabit_args=rabit_args)
|
|
results = client.gather(futures)
|
|
for ret in results:
|
|
msg = ret.stdout.decode('utf-8')
|
|
assert msg.find('1 test from GPUQuantile') != -1, msg
|
|
assert ret.returncode == 0, msg
|
|
|
|
@pytest.mark.skipif(**tm.no_dask())
|
|
@pytest.mark.mgpu
|
|
@pytest.mark.gtest
|
|
def test_quantile_basic(self):
|
|
self.run_quantile('AllReduceBasic')
|
|
|
|
@pytest.mark.skipif(**tm.no_dask())
|
|
@pytest.mark.mgpu
|
|
@pytest.mark.gtest
|
|
def test_quantile_same_on_all_workers(self):
|
|
self.run_quantile('SameOnAllWorkers')
|