Rory Mitchell e67388fb8f
Some guidelines on device memory usage (#5038)
* Add memory usage demo

* Update documentation
2019-11-17 07:48:24 +13:00

52 lines
1.2 KiB
Python

import xgboost as xgb
import numpy as np
import time
import pickle
import GPUtil
n = 10000
m = 1000
X = np.random.random((n, m))
y = np.random.random(n)
param = {'objective': 'binary:logistic',
'tree_method': 'gpu_hist'
}
iterations = 5
dtrain = xgb.DMatrix(X, label=y)
# High memory usage
# active bst objects with device memory persist across iterations
boosters = []
for i in range(iterations):
bst = xgb.train(param, dtrain)
boosters.append(bst)
print("Example 1")
GPUtil.showUtilization()
del boosters
# Better memory usage
# The bst object can be destroyed by the python gc, freeing device memory
# The gc may not immediately free the object, so more than one booster can be allocated at a time
boosters = []
for i in range(iterations):
bst = xgb.train(param, dtrain)
boosters.append(pickle.dumps(bst))
print("Example 2")
GPUtil.showUtilization()
del boosters
# Best memory usage
# The gc explicitly frees the booster before starting the next iteration
boosters = []
for i in range(iterations):
bst = xgb.train(param, dtrain)
boosters.append(pickle.dumps(bst))
del bst
print("Example 3")
GPUtil.showUtilization()
del boosters