xgboost/tests/cpp/predictor/test_gpu_predictor.cu
Jiaming Yuan 3136185bc5
JSON configuration IO. (#5111)
* Add saving/loading JSON configuration.
* Implement Python pickle interface with new IO routines.
* Basic tests for training continuation.
2019-12-15 17:31:53 +08:00

98 lines
3.4 KiB
Plaintext

/*!
* Copyright 2017-2019 XGBoost contributors
*/
#include <dmlc/filesystem.h>
#include <xgboost/c_api.h>
#include <xgboost/predictor.h>
#include <xgboost/logging.h>
#include <xgboost/learner.h>
#include <string>
#include "gtest/gtest.h"
#include "../helpers.h"
#include "../../../src/gbm/gbtree_model.h"
namespace xgboost {
namespace predictor {
TEST(GpuPredictor, Basic) {
auto cpu_lparam = CreateEmptyGenericParam(-1);
auto gpu_lparam = CreateEmptyGenericParam(0);
auto cache = std::make_shared<std::unordered_map<DMatrix*, PredictionCacheEntry>>();
std::unique_ptr<Predictor> gpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("gpu_predictor", &gpu_lparam, cache));
std::unique_ptr<Predictor> cpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor", &cpu_lparam, cache));
gpu_predictor->Configure({});
cpu_predictor->Configure({});
for (size_t i = 1; i < 33; i *= 2) {
int n_row = i, n_col = i;
auto dmat = CreateDMatrix(n_row, n_col, 0);
LearnerModelParam param;
param.num_feature = n_col;
param.num_output_group = 1;
param.base_score = 0.5;
gbm::GBTreeModel model = CreateTestModel(&param);
// Test predict batch
HostDeviceVector<float> gpu_out_predictions;
HostDeviceVector<float> cpu_out_predictions;
gpu_predictor->PredictBatch((*dmat).get(), &gpu_out_predictions, model, 0);
cpu_predictor->PredictBatch((*dmat).get(), &cpu_out_predictions, model, 0);
std::vector<float>& gpu_out_predictions_h = gpu_out_predictions.HostVector();
std::vector<float>& cpu_out_predictions_h = cpu_out_predictions.HostVector();
float abs_tolerance = 0.001;
for (int j = 0; j < gpu_out_predictions.Size(); j++) {
ASSERT_NEAR(gpu_out_predictions_h[j], cpu_out_predictions_h[j], abs_tolerance);
}
delete dmat;
}
}
TEST(gpu_predictor, ExternalMemoryTest) {
auto lparam = CreateEmptyGenericParam(0);
auto cache = std::make_shared<std::unordered_map<DMatrix*, PredictionCacheEntry>>();
std::unique_ptr<Predictor> gpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("gpu_predictor", &lparam, cache));
gpu_predictor->Configure({});
LearnerModelParam param;
param.num_feature = 2;
const int n_classes = 3;
param.num_output_group = n_classes;
param.base_score = 0.5;
gbm::GBTreeModel model = CreateTestModel(&param);
std::vector<std::unique_ptr<DMatrix>> dmats;
dmlc::TemporaryDirectory tmpdir;
std::string file0 = tmpdir.path + "/big_0.libsvm";
std::string file1 = tmpdir.path + "/big_1.libsvm";
std::string file2 = tmpdir.path + "/big_2.libsvm";
dmats.push_back(CreateSparsePageDMatrix(9, 64UL, file0));
dmats.push_back(CreateSparsePageDMatrix(128, 128UL, file1));
dmats.push_back(CreateSparsePageDMatrix(1024, 1024UL, file2));
for (const auto& dmat: dmats) {
dmat->Info().base_margin_.Resize(dmat->Info().num_row_ * n_classes, 0.5);
HostDeviceVector<float> out_predictions;
gpu_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0);
EXPECT_EQ(out_predictions.Size(), dmat->Info().num_row_ * n_classes);
const std::vector<float> &host_vector = out_predictions.ConstHostVector();
for (int i = 0; i < host_vector.size() / n_classes; i++) {
ASSERT_EQ(host_vector[i * n_classes], 2.0);
ASSERT_EQ(host_vector[i * n_classes + 1], 0.5);
ASSERT_EQ(host_vector[i * n_classes + 2], 0.5);
}
}
}
} // namespace predictor
} // namespace xgboost