xgboost/R-package/R/xgb.train.R

434 lines
23 KiB
R

#' eXtreme Gradient Boosting Training
#'
#' \code{xgb.train} is an advanced interface for training an xgboost model.
#' The \code{xgboost} function is a simpler wrapper for \code{xgb.train}.
#'
#' @param params the list of parameters. The complete list of parameters is
#' available in the \href{http://xgboost.readthedocs.io/en/latest/parameter.html}{online documentation}. Below
#' is a shorter summary:
#'
#' 1. General Parameters
#'
#' \itemize{
#' \item \code{booster} which booster to use, can be \code{gbtree} or \code{gblinear}. Default: \code{gbtree}.
#' }
#'
#' 2. Booster Parameters
#'
#' 2.1. Parameters for Tree Booster
#'
#' \itemize{
#' \item{ \code{eta} control the learning rate: scale the contribution of each tree by a factor of \code{0 < eta < 1}
#' when it is added to the current approximation.
#' Used to prevent overfitting by making the boosting process more conservative.
#' Lower value for \code{eta} implies larger value for \code{nrounds}: low \code{eta} value means model
#' more robust to overfitting but slower to compute. Default: 0.3}
#' \item{ \code{gamma} minimum loss reduction required to make a further partition on a leaf node of the tree.
#' the larger, the more conservative the algorithm will be.}
#' \item \code{max_depth} maximum depth of a tree. Default: 6
#' \item{\code{min_child_weight} minimum sum of instance weight (hessian) needed in a child.
#' If the tree partition step results in a leaf node with the sum of instance weight less than min_child_weight,
#' then the building process will give up further partitioning.
#' In linear regression mode, this simply corresponds to minimum number of instances needed to be in each node.
#' The larger, the more conservative the algorithm will be. Default: 1}
#' \item{ \code{subsample} subsample ratio of the training instance.
#' Setting it to 0.5 means that xgboost randomly collected half of the data instances to grow trees
#' and this will prevent overfitting. It makes computation shorter (because less data to analyse).
#' It is advised to use this parameter with \code{eta} and increase \code{nrounds}. Default: 1}
#' \item \code{colsample_bytree} subsample ratio of columns when constructing each tree. Default: 1
#' \item \code{lambda} L2 regularization term on weights. Default: 1
#' \item \code{alpha} L1 regularization term on weights. (there is no L1 reg on bias because it is not important). Default: 0
#' \item{ \code{num_parallel_tree} Experimental parameter. number of trees to grow per round.
#' Useful to test Random Forest through XGBoost
#' (set \code{colsample_bytree < 1}, \code{subsample < 1} and \code{round = 1}) accordingly.
#' Default: 1}
#' \item{ \code{monotone_constraints} A numerical vector consists of \code{1}, \code{0} and \code{-1} with its length
#' equals to the number of features in the training data.
#' \code{1} is increasing, \code{-1} is decreasing and \code{0} is no constraint.}
#' \item{ \code{interaction_constraints} A list of vectors specifying feature indices of permitted interactions.
#' Each item of the list represents one permitted interaction where specified features are allowed to interact with each other.
#' Feature index values should start from \code{0} (\code{0} references the first column).
#' Leave argument unspecified for no interaction constraints.}
#' }
#'
#' 2.2. Parameters for Linear Booster
#'
#' \itemize{
#' \item \code{lambda} L2 regularization term on weights. Default: 0
#' \item \code{lambda_bias} L2 regularization term on bias. Default: 0
#' \item \code{alpha} L1 regularization term on weights. (there is no L1 reg on bias because it is not important). Default: 0
#' }
#'
#' 3. Task Parameters
#'
#' \itemize{
#' \item{ \code{objective} specify the learning task and the corresponding learning objective, users can pass a self-defined function to it.
#' The default objective options are below:
#' \itemize{
#' \item \code{reg:squarederror} Regression with squared loss (Default).
#' \item{ \code{reg:squaredlogerror}: regression with squared log loss \eqn{1/2 * (log(pred + 1) - log(label + 1))^2}.
#' All inputs are required to be greater than -1.
#' Also, see metric rmsle for possible issue with this objective.}
#' \item \code{reg:logistic} logistic regression.
#' \item \code{reg:pseudohubererror}: regression with Pseudo Huber loss, a twice differentiable alternative to absolute loss.
#' \item \code{binary:logistic} logistic regression for binary classification. Output probability.
#' \item \code{binary:logitraw} logistic regression for binary classification, output score before logistic transformation.
#' \item \code{binary:hinge}: hinge loss for binary classification. This makes predictions of 0 or 1, rather than producing probabilities.
#' \item{ \code{count:poisson}: Poisson regression for count data, output mean of Poisson distribution.
#' \code{max_delta_step} is set to 0.7 by default in poisson regression (used to safeguard optimization).}
#' \item{ \code{survival:cox}: Cox regression for right censored survival time data (negative values are considered right censored).
#' Note that predictions are returned on the hazard ratio scale (i.e., as HR = exp(marginal_prediction) in the proportional
#' hazard function \code{h(t) = h0(t) * HR)}.}
#' \item{ \code{survival:aft}: Accelerated failure time model for censored survival time data. See
#' \href{https://xgboost.readthedocs.io/en/latest/tutorials/aft_survival_analysis.html}{Survival Analysis with Accelerated Failure Time}
#' for details.}
#' \item \code{aft_loss_distribution}: Probability Density Function used by \code{survival:aft} and \code{aft-nloglik} metric.
#' \item{ \code{multi:softmax} set xgboost to do multiclass classification using the softmax objective.
#' Class is represented by a number and should be from 0 to \code{num_class - 1}.}
#' \item{ \code{multi:softprob} same as softmax, but prediction outputs a vector of ndata * nclass elements, which can be
#' further reshaped to ndata, nclass matrix. The result contains predicted probabilities of each data point belonging
#' to each class.}
#' \item \code{rank:pairwise} set xgboost to do ranking task by minimizing the pairwise loss.
#' \item{ \code{rank:ndcg}: Use LambdaMART to perform list-wise ranking where
#' \href{https://en.wikipedia.org/wiki/Discounted_cumulative_gain}{Normalized Discounted Cumulative Gain (NDCG)} is maximized.}
#' \item{ \code{rank:map}: Use LambdaMART to perform list-wise ranking where
#' \href{https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision}{Mean Average Precision (MAP)}
#' is maximized.}
#' \item{ \code{reg:gamma}: gamma regression with log-link.
#' Output is a mean of gamma distribution.
#' It might be useful, e.g., for modeling insurance claims severity, or for any outcome that might be
#' \href{https://en.wikipedia.org/wiki/Gamma_distribution#Applications}{gamma-distributed}.}
#' \item{ \code{reg:tweedie}: Tweedie regression with log-link.
#' It might be useful, e.g., for modeling total loss in insurance, or for any outcome that might be
#' \href{https://en.wikipedia.org/wiki/Tweedie_distribution#Applications}{Tweedie-distributed}.}
#' }
#' }
#' \item \code{base_score} the initial prediction score of all instances, global bias. Default: 0.5
#' \item{ \code{eval_metric} evaluation metrics for validation data.
#' Users can pass a self-defined function to it.
#' Default: metric will be assigned according to objective
#' (rmse for regression, and error for classification, mean average precision for ranking).
#' List is provided in detail section.}
#' }
#'
#' @param data training dataset. \code{xgb.train} accepts only an \code{xgb.DMatrix} as the input.
#' \code{xgboost}, in addition, also accepts \code{matrix}, \code{dgCMatrix}, or name of a local data file.
#' @param nrounds max number of boosting iterations.
#' @param watchlist named list of xgb.DMatrix datasets to use for evaluating model performance.
#' Metrics specified in either \code{eval_metric} or \code{feval} will be computed for each
#' of these datasets during each boosting iteration, and stored in the end as a field named
#' \code{evaluation_log} in the resulting object. When either \code{verbose>=1} or
#' \code{\link{cb.print.evaluation}} callback is engaged, the performance results are continuously
#' printed out during the training.
#' E.g., specifying \code{watchlist=list(validation1=mat1, validation2=mat2)} allows to track
#' the performance of each round's model on mat1 and mat2.
#' @param obj customized objective function. Returns gradient and second order
#' gradient with given prediction and dtrain.
#' @param feval customized evaluation function. Returns
#' \code{list(metric='metric-name', value='metric-value')} with given
#' prediction and dtrain.
#' @param verbose If 0, xgboost will stay silent. If 1, it will print information about performance.
#' If 2, some additional information will be printed out.
#' Note that setting \code{verbose > 0} automatically engages the
#' \code{cb.print.evaluation(period=1)} callback function.
#' @param print_every_n Print each n-th iteration evaluation messages when \code{verbose>0}.
#' Default is 1 which means all messages are printed. This parameter is passed to the
#' \code{\link{cb.print.evaluation}} callback.
#' @param early_stopping_rounds If \code{NULL}, the early stopping function is not triggered.
#' If set to an integer \code{k}, training with a validation set will stop if the performance
#' doesn't improve for \code{k} rounds.
#' Setting this parameter engages the \code{\link{cb.early.stop}} callback.
#' @param maximize If \code{feval} and \code{early_stopping_rounds} are set,
#' then this parameter must be set as well.
#' When it is \code{TRUE}, it means the larger the evaluation score the better.
#' This parameter is passed to the \code{\link{cb.early.stop}} callback.
#' @param save_period when it is non-NULL, model is saved to disk after every \code{save_period} rounds,
#' 0 means save at the end. The saving is handled by the \code{\link{cb.save.model}} callback.
#' @param save_name the name or path for periodically saved model file.
#' @param xgb_model a previously built model to continue the training from.
#' Could be either an object of class \code{xgb.Booster}, or its raw data, or the name of a
#' file with a previously saved model.
#' @param callbacks a list of callback functions to perform various task during boosting.
#' See \code{\link{callbacks}}. Some of the callbacks are automatically created depending on the
#' parameters' values. User can provide either existing or their own callback methods in order
#' to customize the training process.
#' @param ... other parameters to pass to \code{params}.
#' @param label vector of response values. Should not be provided when data is
#' a local data file name or an \code{xgb.DMatrix}.
#' @param missing by default is set to NA, which means that NA values should be considered as 'missing'
#' by the algorithm. Sometimes, 0 or other extreme value might be used to represent missing values.
#' This parameter is only used when input is a dense matrix.
#' @param weight a vector indicating the weight for each row of the input.
#'
#' @details
#' These are the training functions for \code{xgboost}.
#'
#' The \code{xgb.train} interface supports advanced features such as \code{watchlist},
#' customized objective and evaluation metric functions, therefore it is more flexible
#' than the \code{xgboost} interface.
#'
#' Parallelization is automatically enabled if \code{OpenMP} is present.
#' Number of threads can also be manually specified via \code{nthread} parameter.
#'
#' The evaluation metric is chosen automatically by XGBoost (according to the objective)
#' when the \code{eval_metric} parameter is not provided.
#' User may set one or several \code{eval_metric} parameters.
#' Note that when using a customized metric, only this single metric can be used.
#' The following is the list of built-in metrics for which XGBoost provides optimized implementation:
#' \itemize{
#' \item \code{rmse} root mean square error. \url{https://en.wikipedia.org/wiki/Root_mean_square_error}
#' \item \code{logloss} negative log-likelihood. \url{https://en.wikipedia.org/wiki/Log-likelihood}
#' \item \code{mlogloss} multiclass logloss. \url{https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html}
#' \item \code{error} Binary classification error rate. It is calculated as \code{(# wrong cases) / (# all cases)}.
#' By default, it uses the 0.5 threshold for predicted values to define negative and positive instances.
#' Different threshold (e.g., 0.) could be specified as "error@0."
#' \item \code{merror} Multiclass classification error rate. It is calculated as \code{(# wrong cases) / (# all cases)}.
#' \item \code{mae} Mean absolute error
#' \item \code{mape} Mean absolute percentage error
#' \item{ \code{auc} Area under the curve.
#' \url{https://en.wikipedia.org/wiki/Receiver_operating_characteristic#'Area_under_curve} for ranking evaluation.}
#' \item \code{aucpr} Area under the PR curve. \url{https://en.wikipedia.org/wiki/Precision_and_recall} for ranking evaluation.
#' \item \code{ndcg} Normalized Discounted Cumulative Gain (for ranking task). \url{https://en.wikipedia.org/wiki/NDCG}
#' }
#'
#' The following callbacks are automatically created when certain parameters are set:
#' \itemize{
#' \item \code{cb.print.evaluation} is turned on when \code{verbose > 0};
#' and the \code{print_every_n} parameter is passed to it.
#' \item \code{cb.evaluation.log} is on when \code{watchlist} is present.
#' \item \code{cb.early.stop}: when \code{early_stopping_rounds} is set.
#' \item \code{cb.save.model}: when \code{save_period > 0} is set.
#' }
#'
#' @return
#' An object of class \code{xgb.Booster} with the following elements:
#' \itemize{
#' \item \code{handle} a handle (pointer) to the xgboost model in memory.
#' \item \code{raw} a cached memory dump of the xgboost model saved as R's \code{raw} type.
#' \item \code{niter} number of boosting iterations.
#' \item \code{evaluation_log} evaluation history stored as a \code{data.table} with the
#' first column corresponding to iteration number and the rest corresponding to evaluation
#' metrics' values. It is created by the \code{\link{cb.evaluation.log}} callback.
#' \item \code{call} a function call.
#' \item \code{params} parameters that were passed to the xgboost library. Note that it does not
#' capture parameters changed by the \code{\link{cb.reset.parameters}} callback.
#' \item \code{callbacks} callback functions that were either automatically assigned or
#' explicitly passed.
#' \item \code{best_iteration} iteration number with the best evaluation metric value
#' (only available with early stopping).
#' \item \code{best_score} the best evaluation metric value during early stopping.
#' (only available with early stopping).
#' \item \code{feature_names} names of the training dataset features
#' (only when column names were defined in training data).
#' \item \code{nfeatures} number of features in training data.
#' }
#'
#' @seealso
#' \code{\link{callbacks}},
#' \code{\link{predict.xgb.Booster}},
#' \code{\link{xgb.cv}}
#'
#' @references
#'
#' Tianqi Chen and Carlos Guestrin, "XGBoost: A Scalable Tree Boosting System",
#' 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016, \url{https://arxiv.org/abs/1603.02754}
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#'
#' dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
#' dtest <- with(agaricus.test, xgb.DMatrix(data, label = label, nthread = 2))
#' watchlist <- list(train = dtrain, eval = dtest)
#'
#' ## A simple xgb.train example:
#' param <- list(max_depth = 2, eta = 1, verbose = 0, nthread = 2,
#' objective = "binary:logistic", eval_metric = "auc")
#' bst <- xgb.train(param, dtrain, nrounds = 2, watchlist)
#'
#'
#' ## An xgb.train example where custom objective and evaluation metric are used:
#' logregobj <- function(preds, dtrain) {
#' labels <- getinfo(dtrain, "label")
#' preds <- 1/(1 + exp(-preds))
#' grad <- preds - labels
#' hess <- preds * (1 - preds)
#' return(list(grad = grad, hess = hess))
#' }
#' evalerror <- function(preds, dtrain) {
#' labels <- getinfo(dtrain, "label")
#' err <- as.numeric(sum(labels != (preds > 0)))/length(labels)
#' return(list(metric = "error", value = err))
#' }
#'
#' # These functions could be used by passing them either:
#' # as 'objective' and 'eval_metric' parameters in the params list:
#' param <- list(max_depth = 2, eta = 1, verbose = 0, nthread = 2,
#' objective = logregobj, eval_metric = evalerror)
#' bst <- xgb.train(param, dtrain, nrounds = 2, watchlist)
#'
#' # or through the ... arguments:
#' param <- list(max_depth = 2, eta = 1, verbose = 0, nthread = 2)
#' bst <- xgb.train(param, dtrain, nrounds = 2, watchlist,
#' objective = logregobj, eval_metric = evalerror)
#'
#' # or as dedicated 'obj' and 'feval' parameters of xgb.train:
#' bst <- xgb.train(param, dtrain, nrounds = 2, watchlist,
#' obj = logregobj, feval = evalerror)
#'
#'
#' ## An xgb.train example of using variable learning rates at each iteration:
#' param <- list(max_depth = 2, eta = 1, verbose = 0, nthread = 2,
#' objective = "binary:logistic", eval_metric = "auc")
#' my_etas <- list(eta = c(0.5, 0.1))
#' bst <- xgb.train(param, dtrain, nrounds = 2, watchlist,
#' callbacks = list(cb.reset.parameters(my_etas)))
#'
#' ## Early stopping:
#' bst <- xgb.train(param, dtrain, nrounds = 25, watchlist,
#' early_stopping_rounds = 3)
#'
#' ## An 'xgboost' interface example:
#' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label,
#' max_depth = 2, eta = 1, nthread = 2, nrounds = 2,
#' objective = "binary:logistic")
#' pred <- predict(bst, agaricus.test$data)
#'
#' @rdname xgb.train
#' @export
xgb.train <- function(params = list(), data, nrounds, watchlist = list(),
obj = NULL, feval = NULL, verbose = 1, print_every_n = 1L,
early_stopping_rounds = NULL, maximize = NULL,
save_period = NULL, save_name = "xgboost.model",
xgb_model = NULL, callbacks = list(), ...) {
check.deprecation(...)
params <- check.booster.params(params, ...)
check.custom.obj()
check.custom.eval()
# data & watchlist checks
dtrain <- data
if (!inherits(dtrain, "xgb.DMatrix"))
stop("second argument dtrain must be xgb.DMatrix")
if (length(watchlist) > 0) {
if (typeof(watchlist) != "list" ||
!all(vapply(watchlist, inherits, logical(1), what = 'xgb.DMatrix')))
stop("watchlist must be a list of xgb.DMatrix elements")
evnames <- names(watchlist)
if (is.null(evnames) || any(evnames == ""))
stop("each element of the watchlist must have a name tag")
}
# Handle multiple evaluation metrics given as a list
for (m in params$eval_metric) {
params <- c(params, list(eval_metric = m))
}
# evaluation printing callback
params <- c(params)
print_every_n <- max(as.integer(print_every_n), 1L)
if (!has.callbacks(callbacks, 'cb.print.evaluation') &&
verbose) {
callbacks <- add.cb(callbacks, cb.print.evaluation(print_every_n))
}
# evaluation log callback: it is automatically enabled when watchlist is provided
evaluation_log <- list()
if (!has.callbacks(callbacks, 'cb.evaluation.log') &&
length(watchlist) > 0) {
callbacks <- add.cb(callbacks, cb.evaluation.log())
}
# Model saving callback
if (!is.null(save_period) &&
!has.callbacks(callbacks, 'cb.save.model')) {
callbacks <- add.cb(callbacks, cb.save.model(save_period, save_name))
}
# Early stopping callback
stop_condition <- FALSE
if (!is.null(early_stopping_rounds) &&
!has.callbacks(callbacks, 'cb.early.stop')) {
callbacks <- add.cb(callbacks, cb.early.stop(early_stopping_rounds,
maximize = maximize, verbose = verbose))
}
# Sort the callbacks into categories
cb <- categorize.callbacks(callbacks)
params['validate_parameters'] <- TRUE
if (!is.null(params[['seed']])) {
warning("xgb.train: `seed` is ignored in R package. Use `set.seed()` instead.")
}
# The tree updating process would need slightly different handling
is_update <- NVL(params[['process_type']], '.') == 'update'
# Construct a booster (either a new one or load from xgb_model)
handle <- xgb.Booster.handle(params, append(watchlist, dtrain), xgb_model)
bst <- xgb.handleToBooster(handle)
# extract parameters that can affect the relationship b/w #trees and #iterations
num_class <- max(as.numeric(NVL(params[['num_class']], 1)), 1)
num_parallel_tree <- max(as.numeric(NVL(params[['num_parallel_tree']], 1)), 1)
# When the 'xgb_model' was set, find out how many boosting iterations it has
niter_init <- 0
if (!is.null(xgb_model)) {
niter_init <- as.numeric(xgb.attr(bst, 'niter')) + 1
if (length(niter_init) == 0) {
niter_init <- xgb.ntree(bst) %/% (num_parallel_tree * num_class)
}
}
if (is_update && nrounds > niter_init)
stop("nrounds cannot be larger than ", niter_init, " (nrounds of xgb_model)")
niter_skip <- ifelse(is_update, 0, niter_init)
begin_iteration <- niter_skip + 1
end_iteration <- niter_skip + nrounds
# the main loop for boosting iterations
for (iteration in begin_iteration:end_iteration) {
for (f in cb$pre_iter) f()
xgb.iter.update(bst$handle, dtrain, iteration - 1, obj)
if (length(watchlist) > 0)
bst_evaluation <- xgb.iter.eval(bst$handle, watchlist, iteration - 1, feval) # nolint: object_usage_linter
xgb.attr(bst$handle, 'niter') <- iteration - 1
for (f in cb$post_iter) f()
if (stop_condition) break
}
for (f in cb$finalize) f(finalize = TRUE)
bst <- xgb.Booster.complete(bst, saveraw = TRUE)
# store the total number of boosting iterations
bst$niter <- end_iteration
# store the evaluation results
if (length(evaluation_log) > 0 &&
nrow(evaluation_log) > 0) {
# include the previous compatible history when available
if (inherits(xgb_model, 'xgb.Booster') &&
!is_update &&
!is.null(xgb_model$evaluation_log) &&
isTRUE(all.equal(colnames(evaluation_log),
colnames(xgb_model$evaluation_log)))) {
evaluation_log <- rbindlist(list(xgb_model$evaluation_log, evaluation_log))
}
bst$evaluation_log <- evaluation_log
}
bst$call <- match.call()
bst$params <- params
bst$callbacks <- callbacks
if (!is.null(colnames(dtrain)))
bst$feature_names <- colnames(dtrain)
bst$nfeatures <- ncol(dtrain)
return(bst)
}