146 lines
5.9 KiB
Plaintext
146 lines
5.9 KiB
Plaintext
/*
|
|
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#pragma once
|
|
|
|
#include "../../../../src/tree/param.h"
|
|
#include "node.cuh"
|
|
|
|
namespace xgboost {
|
|
namespace tree {
|
|
namespace exact {
|
|
|
|
/**
|
|
* @brief Helper function to update the child node based on the current status
|
|
* of its parent node
|
|
* @param nodes the nodes array in which the position at 'nid' will be updated
|
|
* @param nid the nodeId in the 'nodes' array corresponding to this child node
|
|
* @param grad gradient sum for this child node
|
|
* @param minChildWeight minimum child weight for the split
|
|
* @param alpha L1 regularizer for weight updates
|
|
* @param lambda lambda as in xgboost
|
|
* @param maxStep max weight step update
|
|
*/
|
|
template <typename node_id_t>
|
|
DEV_INLINE void updateOneChildNode(Node<node_id_t>* nodes, int nid,
|
|
const bst_gpair& grad,
|
|
const TrainParam& param) {
|
|
nodes[nid].gradSum = grad;
|
|
nodes[nid].score = CalcGain(param, grad.grad, grad.hess);
|
|
nodes[nid].weight = CalcWeight(param, grad.grad, grad.hess);
|
|
nodes[nid].id = nid;
|
|
}
|
|
|
|
/**
|
|
* @brief Helper function to update the child nodes based on the current status
|
|
* of their parent node
|
|
* @param nodes the nodes array in which the position at 'nid' will be updated
|
|
* @param pid the nodeId of the parent
|
|
* @param gradL gradient sum for the left child node
|
|
* @param gradR gradient sum for the right child node
|
|
* @param param the training parameter struct
|
|
*/
|
|
template <typename node_id_t>
|
|
DEV_INLINE void updateChildNodes(Node<node_id_t>* nodes, int pid,
|
|
const bst_gpair& gradL, const bst_gpair& gradR,
|
|
const TrainParam& param) {
|
|
int childId = (pid * 2) + 1;
|
|
updateOneChildNode(nodes, childId, gradL, param);
|
|
updateOneChildNode(nodes, childId + 1, gradR, param);
|
|
}
|
|
|
|
template <typename node_id_t>
|
|
DEV_INLINE void updateNodeAndChildren(Node<node_id_t>* nodes, const Split& s,
|
|
const Node<node_id_t>& n, int absNodeId,
|
|
int colId, const bst_gpair& gradScan,
|
|
const bst_gpair& colSum, float thresh,
|
|
const TrainParam& param) {
|
|
bool missingLeft = true;
|
|
// get the default direction for the current node
|
|
bst_gpair missing = n.gradSum - colSum;
|
|
loss_chg_missing(gradScan, missing, n.gradSum, n.score, param, missingLeft);
|
|
// get the score/weight/id/gradSum for left and right child nodes
|
|
bst_gpair lGradSum, rGradSum;
|
|
if (missingLeft) {
|
|
lGradSum = gradScan + n.gradSum - colSum;
|
|
} else {
|
|
lGradSum = gradScan;
|
|
}
|
|
rGradSum = n.gradSum - lGradSum;
|
|
updateChildNodes(nodes, absNodeId, lGradSum, rGradSum, param);
|
|
// update default-dir, threshold and feature id for current node
|
|
nodes[absNodeId].dir = missingLeft ? LeftDir : RightDir;
|
|
nodes[absNodeId].colIdx = colId;
|
|
nodes[absNodeId].threshold = thresh;
|
|
}
|
|
|
|
template <typename node_id_t, int BLKDIM = 256>
|
|
__global__ void split2nodeKernel(
|
|
Node<node_id_t>* nodes, const Split* nodeSplits, const bst_gpair* gradScans,
|
|
const bst_gpair* gradSums, const float* vals, const int* colIds,
|
|
const int* colOffsets, const node_id_t* nodeAssigns, int nUniqKeys,
|
|
node_id_t nodeStart, int nCols, const TrainParam param) {
|
|
int uid = (blockIdx.x * blockDim.x) + threadIdx.x;
|
|
if (uid >= nUniqKeys) {
|
|
return;
|
|
}
|
|
int absNodeId = uid + nodeStart;
|
|
Split s = nodeSplits[uid];
|
|
if (s.isSplittable(param.min_split_loss)) {
|
|
int idx = s.index;
|
|
int nodeInstId =
|
|
abs2uniqKey(idx, nodeAssigns, colIds, nodeStart, nUniqKeys);
|
|
updateNodeAndChildren(nodes, s, nodes[absNodeId], absNodeId, colIds[idx],
|
|
gradScans[idx], gradSums[nodeInstId], vals[idx],
|
|
param);
|
|
} else {
|
|
// cannot be split further, so this node is a leaf!
|
|
nodes[absNodeId].score = -FLT_MAX;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief function to convert split information into node
|
|
* @param nodes the output nodes
|
|
* @param nodeSplits split information
|
|
* @param gradScans scan of sorted gradients across columns
|
|
* @param gradSums key-wise gradient reduction across columns
|
|
* @param vals the feature values
|
|
* @param colIds column indices for each element in the array
|
|
* @param colOffsets column segment offsets
|
|
* @param nodeAssigns node-id assignment to every feature value
|
|
* @param nUniqKeys number of nodes that we are currently working on
|
|
* @param nodeStart start offset of the nodes in the overall BFS tree
|
|
* @param nCols number of columns
|
|
* @param preUniquifiedKeys whether to uniquify the keys from inside kernel or
|
|
* not
|
|
* @param param the training parameter struct
|
|
*/
|
|
template <typename node_id_t, int BLKDIM = 256>
|
|
void split2node(Node<node_id_t>* nodes, const Split* nodeSplits,
|
|
const bst_gpair* gradScans, const bst_gpair* gradSums,
|
|
const float* vals, const int* colIds, const int* colOffsets,
|
|
const node_id_t* nodeAssigns, int nUniqKeys,
|
|
node_id_t nodeStart, int nCols, const TrainParam param) {
|
|
int nBlks = dh::div_round_up(nUniqKeys, BLKDIM);
|
|
split2nodeKernel<<<nBlks, BLKDIM>>>(nodes, nodeSplits, gradScans, gradSums,
|
|
vals, colIds, colOffsets, nodeAssigns,
|
|
nUniqKeys, nodeStart, nCols, param);
|
|
}
|
|
|
|
} // namespace exact
|
|
} // namespace tree
|
|
} // namespace xgboost
|