xgboost/tests/python-gpu/test_gpu_updaters.py
2023-05-23 03:58:31 +08:00

268 lines
9.2 KiB
Python

import sys
from typing import Any, Dict
import numpy as np
import pytest
from hypothesis import assume, given, note, settings, strategies
import xgboost as xgb
from xgboost import testing as tm
from xgboost.testing.params import cat_parameter_strategy, hist_parameter_strategy
from xgboost.testing.updater import check_init_estimation, check_quantile_loss
sys.path.append("tests/python")
import test_updaters as test_up
pytestmark = tm.timeout(30)
def train_result(param, dmat: xgb.DMatrix, num_rounds: int) -> dict:
result: xgb.callback.TrainingCallback.EvalsLog = {}
booster = xgb.train(
param,
dmat,
num_rounds,
[(dmat, "train")],
verbose_eval=False,
evals_result=result,
)
assert booster.num_features() == dmat.num_col()
assert booster.num_boosted_rounds() == num_rounds
return result
class TestGPUUpdatersMulti:
@given(
hist_parameter_strategy, strategies.integers(1, 20), tm.multi_dataset_strategy
)
@settings(deadline=None, max_examples=50, print_blob=True)
def test_hist(self, param, num_rounds, dataset):
param["tree_method"] = "gpu_hist"
param = dataset.set_params(param)
result = train_result(param, dataset.get_dmat(), num_rounds)
note(result)
assert tm.non_increasing(result["train"][dataset.metric])
class TestGPUUpdaters:
cputest = test_up.TestTreeMethod()
@given(
hist_parameter_strategy, strategies.integers(1, 20), tm.make_dataset_strategy()
)
@settings(deadline=None, max_examples=50, print_blob=True)
def test_gpu_hist(self, param, num_rounds, dataset):
param["tree_method"] = "gpu_hist"
param = dataset.set_params(param)
result = train_result(param, dataset.get_dmat(), num_rounds)
note(result)
assert tm.non_increasing(result["train"][dataset.metric])
@given(tm.sparse_datasets_strategy)
@settings(deadline=None, print_blob=True)
def test_sparse(self, dataset):
param = {"tree_method": "hist", "max_bin": 64}
hist_result = train_result(param, dataset.get_dmat(), 16)
note(hist_result)
assert tm.non_increasing(hist_result['train'][dataset.metric])
param = {"tree_method": "gpu_hist", "max_bin": 64}
gpu_hist_result = train_result(param, dataset.get_dmat(), 16)
note(gpu_hist_result)
assert tm.non_increasing(gpu_hist_result['train'][dataset.metric])
np.testing.assert_allclose(
hist_result["train"]["rmse"], gpu_hist_result["train"]["rmse"], rtol=1e-2
)
@given(strategies.integers(10, 400), strategies.integers(3, 8),
strategies.integers(1, 2), strategies.integers(4, 7))
@settings(deadline=None, max_examples=20, print_blob=True)
@pytest.mark.skipif(**tm.no_pandas())
def test_categorical_ohe(self, rows, cols, rounds, cats):
self.cputest.run_categorical_ohe(rows, cols, rounds, cats, "gpu_hist")
@given(
tm.categorical_dataset_strategy,
hist_parameter_strategy,
cat_parameter_strategy,
strategies.integers(4, 32),
)
@settings(deadline=None, max_examples=20, print_blob=True)
@pytest.mark.skipif(**tm.no_pandas())
def test_categorical(
self,
dataset: tm.TestDataset,
hist_parameters: Dict[str, Any],
cat_parameters: Dict[str, Any],
n_rounds: int,
) -> None:
cat_parameters.update(hist_parameters)
cat_parameters["tree_method"] = "gpu_hist"
results = train_result(cat_parameters, dataset.get_dmat(), n_rounds)
tm.non_increasing(results["train"]["rmse"])
@given(
hist_parameter_strategy,
cat_parameter_strategy,
)
@settings(deadline=None, max_examples=10, print_blob=True)
def test_categorical_ames_housing(
self,
hist_parameters: Dict[str, Any],
cat_parameters: Dict[str, Any],
) -> None:
cat_parameters.update(hist_parameters)
dataset = tm.TestDataset(
"ames_housing", tm.data.get_ames_housing, "reg:squarederror", "rmse"
)
cat_parameters["tree_method"] = "gpu_hist"
results = train_result(cat_parameters, dataset.get_dmat(), 16)
tm.non_increasing(results["train"]["rmse"])
@given(
strategies.integers(10, 400),
strategies.integers(3, 8),
strategies.integers(4, 7)
)
@settings(deadline=None, max_examples=20, print_blob=True)
@pytest.mark.skipif(**tm.no_pandas())
def test_categorical_missing(self, rows, cols, cats):
self.cputest.run_categorical_missing(rows, cols, cats, "gpu_hist")
@pytest.mark.skipif(**tm.no_pandas())
def test_max_cat(self) -> None:
self.cputest.run_max_cat("gpu_hist")
def test_categorical_32_cat(self):
'''32 hits the bound of integer bitset, so special test'''
rows = 1000
cols = 10
cats = 32
rounds = 4
self.cputest.run_categorical_ohe(rows, cols, rounds, cats, "gpu_hist")
@pytest.mark.skipif(**tm.no_cupy())
def test_invalid_category(self):
self.cputest.run_invalid_category("gpu_hist")
@pytest.mark.skipif(**tm.no_cupy())
@given(
hist_parameter_strategy,
strategies.integers(1, 20),
tm.make_dataset_strategy(),
)
@settings(deadline=None, max_examples=20, print_blob=True)
def test_gpu_hist_device_dmatrix(
self, param: dict, num_rounds: int, dataset: tm.TestDataset
) -> None:
# We cannot handle empty dataset yet
assume(len(dataset.y) > 0)
param['tree_method'] = 'gpu_hist'
param = dataset.set_params(param)
result = train_result(
param,
dataset.get_device_dmat(max_bin=param.get("max_bin", None)),
num_rounds
)
note(result)
assert tm.non_increasing(result['train'][dataset.metric], tolerance=1e-3)
@given(
hist_parameter_strategy,
strategies.integers(1, 3),
tm.make_dataset_strategy(),
)
@settings(deadline=None, max_examples=10, print_blob=True)
def test_external_memory(self, param, num_rounds, dataset):
if dataset.name.endswith("-l1"):
return
# We cannot handle empty dataset yet
assume(len(dataset.y) > 0)
param['tree_method'] = 'gpu_hist'
param = dataset.set_params(param)
m = dataset.get_external_dmat()
external_result = train_result(param, m, num_rounds)
del m
assert tm.non_increasing(external_result['train'][dataset.metric])
def test_empty_dmatrix_prediction(self):
# FIXME(trivialfis): This should be done with all updaters
kRows = 0
kCols = 100
X = np.empty((kRows, kCols))
y = np.empty((kRows,))
dtrain = xgb.DMatrix(X, y)
bst = xgb.train(
{"verbosity": 2, "tree_method": "gpu_hist", "gpu_id": 0},
dtrain,
verbose_eval=True,
num_boost_round=6,
evals=[(dtrain, 'Train')]
)
kRows = 100
X = np.random.randn(kRows, kCols)
dtest = xgb.DMatrix(X)
predictions = bst.predict(dtest)
# non-distributed, 0.0 is returned due to base_score estimation with 0 gradient.
np.testing.assert_allclose(predictions, 0.0, 1e-6)
@pytest.mark.mgpu
@given(tm.make_dataset_strategy(), strategies.integers(0, 10))
@settings(deadline=None, max_examples=10, print_blob=True)
def test_specified_gpu_id_gpu_update(self, dataset, gpu_id):
param = {'tree_method': 'gpu_hist', 'gpu_id': gpu_id}
param = dataset.set_params(param)
result = train_result(param, dataset.get_dmat(), 10)
assert tm.non_increasing(result['train'][dataset.metric])
@pytest.mark.skipif(**tm.no_sklearn())
@pytest.mark.parametrize("weighted", [True, False])
def test_adaptive(self, weighted) -> None:
self.cputest.run_adaptive("gpu_hist", weighted)
def test_init_estimation(self) -> None:
check_init_estimation("gpu_hist")
@pytest.mark.parametrize("weighted", [True, False])
def test_quantile_loss(self, weighted: bool) -> None:
check_quantile_loss("gpu_hist", weighted)
@pytest.mark.skipif(**tm.no_pandas())
def test_issue8824(self):
# column sampling by node crashes because shared pointers go out of scope
import pandas as pd
data = pd.DataFrame(np.random.rand(1024, 8))
data.columns = "x" + data.columns.astype(str)
features = data.columns
data["y"] = data.sum(axis=1) < 4
dtrain = xgb.DMatrix(data[features], label=data["y"])
model = xgb.train(
dtrain=dtrain,
params={
"max_depth": 5,
"learning_rate": 0.05,
"objective": "binary:logistic",
"tree_method": "gpu_hist",
"colsample_bytree": 0.5,
"colsample_bylevel": 0.5,
"colsample_bynode": 0.5, # Causes issues
"reg_alpha": 0.05,
"reg_lambda": 0.005,
"seed": 66,
"subsample": 0.5,
"gamma": 0.2,
"predictor": "auto",
"eval_metric": "auc",
},
num_boost_round=150,
)