* Add interval accuracy * De-virtualize AFT functions * Lint * Refactor AFT metric using GPU-CPU reducer * Fix R build * Fix build on Windows * Fix copyright header * Clang-tidy * Fix crashing demo * Fix typos in comment; explain GPU ID * Remove unnecessary #include * Add C++ test for interval accuracy * Fix a bug in accuracy metric: use log pred * Refactor AFT objective using GPU-CPU Transform * Lint * Fix lint * Use Ninja to speed up build * Use time, not /usr/bin/time * Add cpu_build worker class, with concurrency = 1 * Use concurrency = 1 only for CUDA build * concurrency = 1 for clang-tidy * Address reviewer's feedback * Update link to AFT paper
126 lines
3.0 KiB
C++
126 lines
3.0 KiB
C++
/*!
|
|
* Copyright 2019-2020 by Contributors
|
|
* \file probability_distribution.h
|
|
* \brief Implementation of a few useful probability distributions
|
|
* \author Avinash Barnwal and Hyunsu Cho
|
|
*/
|
|
|
|
#ifndef XGBOOST_COMMON_PROBABILITY_DISTRIBUTION_H_
|
|
#define XGBOOST_COMMON_PROBABILITY_DISTRIBUTION_H_
|
|
|
|
#include <cmath>
|
|
|
|
namespace xgboost {
|
|
namespace common {
|
|
|
|
#ifndef __CUDACC__
|
|
|
|
using std::exp;
|
|
using std::sqrt;
|
|
using std::isinf;
|
|
using std::isnan;
|
|
|
|
#endif // __CUDACC__
|
|
|
|
/*! \brief Constant PI */
|
|
constexpr double kPI = 3.14159265358979323846;
|
|
/*! \brief The Euler-Mascheroni_constant */
|
|
constexpr double kEulerMascheroni = 0.57721566490153286060651209008240243104215933593992;
|
|
|
|
/*! \brief Enum encoding possible choices of probability distribution */
|
|
enum class ProbabilityDistributionType : int {
|
|
kNormal = 0, kLogistic = 1, kExtreme = 2
|
|
};
|
|
|
|
struct NormalDistribution {
|
|
XGBOOST_DEVICE static double PDF(double z) {
|
|
return exp(-z * z / 2.0) / sqrt(2.0 * kPI);
|
|
}
|
|
|
|
XGBOOST_DEVICE static double CDF(double z) {
|
|
return 0.5 * (1 + erf(z / sqrt(2.0)));
|
|
}
|
|
|
|
XGBOOST_DEVICE static double GradPDF(double z) {
|
|
return -z * PDF(z);
|
|
}
|
|
|
|
XGBOOST_DEVICE static double HessPDF(double z) {
|
|
return (z * z - 1.0) * PDF(z);
|
|
}
|
|
|
|
XGBOOST_DEVICE static ProbabilityDistributionType Type() {
|
|
return ProbabilityDistributionType::kNormal;
|
|
}
|
|
};
|
|
|
|
struct LogisticDistribution {
|
|
XGBOOST_DEVICE static double PDF(double z) {
|
|
const double w = exp(z);
|
|
const double sqrt_denominator = 1 + w;
|
|
if (isinf(w) || isinf(w * w)) {
|
|
return 0.0;
|
|
} else {
|
|
return w / (sqrt_denominator * sqrt_denominator);
|
|
}
|
|
}
|
|
|
|
XGBOOST_DEVICE static double CDF(double z) {
|
|
const double w = exp(z);
|
|
return isinf(w) ? 1.0 : (w / (1 + w));
|
|
}
|
|
|
|
XGBOOST_DEVICE static double GradPDF(double z) {
|
|
const double w = exp(z);
|
|
return isinf(w) ? 0.0 : (PDF(z) * (1 - w) / (1 + w));
|
|
}
|
|
|
|
XGBOOST_DEVICE static double HessPDF(double z) {
|
|
const double w = exp(z);
|
|
if (isinf(w) || isinf(w * w)) {
|
|
return 0.0;
|
|
} else {
|
|
return PDF(z) * (w * w - 4 * w + 1) / ((1 + w) * (1 + w));
|
|
}
|
|
}
|
|
|
|
XGBOOST_DEVICE static ProbabilityDistributionType Type() {
|
|
return ProbabilityDistributionType::kLogistic;
|
|
}
|
|
};
|
|
|
|
struct ExtremeDistribution {
|
|
XGBOOST_DEVICE static double PDF(double z) {
|
|
const double w = exp(z);
|
|
return isinf(w) ? 0.0 : (w * exp(-w));
|
|
}
|
|
|
|
XGBOOST_DEVICE static double CDF(double z) {
|
|
const double w = exp(z);
|
|
return 1 - exp(-w);
|
|
}
|
|
|
|
XGBOOST_DEVICE static double GradPDF(double z) {
|
|
const double w = exp(z);
|
|
return isinf(w) ? 0.0 : ((1 - w) * PDF(z));
|
|
}
|
|
|
|
XGBOOST_DEVICE static double HessPDF(double z) {
|
|
const double w = exp(z);
|
|
if (isinf(w) || isinf(w * w)) {
|
|
return 0.0;
|
|
} else {
|
|
return (w * w - 3 * w + 1) * PDF(z);
|
|
}
|
|
}
|
|
|
|
XGBOOST_DEVICE static ProbabilityDistributionType Type() {
|
|
return ProbabilityDistributionType::kExtreme;
|
|
}
|
|
};
|
|
|
|
} // namespace common
|
|
} // namespace xgboost
|
|
|
|
#endif // XGBOOST_COMMON_PROBABILITY_DISTRIBUTION_H_
|