xgboost/regression/xgboost_reg.h
2014-02-19 13:25:01 +08:00

279 lines
12 KiB
C++

#ifndef _XGBOOST_REG_H_
#define _XGBOOST_REG_H_
/*!
* \file xgboost_reg.h
* \brief class for gradient boosted regression
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.tchen@gmail.com
*/
#include <cmath>
#include "xgboost_regdata.h"
#include "../booster/xgboost_gbmbase.h"
#include "../utils/xgboost_utils.h"
#include "../utils/xgboost_stream.h"
namespace xgboost{
namespace regression{
/*! \brief class for gradient boosted regression */
class RegBoostLearner{
public:
RegBoostLearner(bool silent = false){
this->silent = silent;
}
/*!
* \brief a regression booter associated with training and evaluating data
* \param train pointer to the training data
* \param evals array of evaluating data
* \param evname name of evaluation data, used print statistics
*/
RegBoostLearner( const DMatrix *train,
std::vector<const DMatrix *> evals,
std::vector<std::string> evname, bool silent = false ){
this->silent = silent;
SetData(train,evals,evname);
}
/*!
* \brief associate regression booster with training and evaluating data
* \param train pointer to the training data
* \param evals array of evaluating data
* \param evname name of evaluation data, used print statistics
*/
inline void SetData(const DMatrix *train,
std::vector<const DMatrix *> evals,
std::vector<std::string> evname){
this->train_ = train;
this->evals_ = evals;
this->evname_ = evname;
//assign buffer index
int buffer_size = (*train).size();
for(int i = 0; i < evals.size(); i++){
buffer_size += (*evals[i]).size();
}
char str[25];
_itoa(buffer_size,str,10);
base_model.SetParam("num_pbuffer",str);
base_model.SetParam("num_pbuffer",str);
}
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam( const char *name, const char *val ){
mparam.SetParam( name, val );
base_model.SetParam( name, val );
}
/*!
* \brief initialize solver before training, called before training
* this function is reserved for solver to allocate necessary space and do other preparation
*/
inline void InitTrainer( void ){
base_model.InitTrainer();
InitModel();
mparam.AdjustBase();
}
/*!
* \brief initialize the current data storage for model, if the model is used first time, call this function
*/
inline void InitModel( void ){
base_model.InitModel();
}
/*!
* \brief load model from stream
* \param fi input stream
*/
inline void LoadModel( utils::IStream &fi ){
utils::Assert( fi.Read( &mparam, sizeof(ModelParam) ) != 0 );
base_model.LoadModel( fi );
}
/*!
* \brief save model to stream
* \param fo output stream
*/
inline void SaveModel( utils::IStream &fo ) const{
fo.Write( &mparam, sizeof(ModelParam) );
base_model.SaveModel( fo );
}
/*!
* \brief update the model for one iteration
* \param iteration the number of updating iteration
*/
inline void UpdateOneIter( int iteration ){
std::vector<float> grad,hess,preds;
std::vector<unsigned> root_index;
booster::FMatrixS::Image train_image((*train_).data);
Predict(preds,*train_,0);
Gradient(preds,(*train_).labels,grad,hess);
base_model.DoBoost(grad,hess,train_image,root_index);
int buffer_index_offset = (*train_).size();
float loss = 0.0;
for(int i = 0; i < evals_.size();i++){
Predict(preds, *evals_[i], buffer_index_offset);
loss = mparam.Loss(preds,(*evals_[i]).labels);
if(!silent){
printf("The loss of %s data set in %d the \
iteration is %f",evname_[i].c_str(),&iteration,&loss);
}
buffer_index_offset += (*evals_[i]).size();
}
}
/*! \brief get the transformed predictions, given data */
inline void Predict( std::vector<float> &preds, const DMatrix &data,int buffer_index_offset = 0 ){
int data_size = data.size();
preds.resize(data_size);
for(int j = 0; j < data_size; j++){
preds[j] = mparam.PredTransform(mparam.base_score +
base_model.Predict(data.data[j],buffer_index_offset + j));
}
}
private:
/*! \brief get the first order and second order gradient, given the transformed predictions and labels*/
inline void Gradient(const std::vector<float> &preds, const std::vector<float> &labels, std::vector<float> &grad,
std::vector<float> &hess){
grad.clear();
hess.clear();
for(int j = 0; j < preds.size(); j++){
grad.push_back(mparam.FirstOrderGradient(preds[j],labels[j]));
hess.push_back(mparam.SecondOrderGradient(preds[j],labels[j]));
}
}
enum LOSS_TYPE_LIST{
LINEAR_SQUARE,
LOGISTIC_NEGLOGLIKELIHOOD,
};
/*! \brief training parameter for regression */
struct ModelParam{
/* \brief global bias */
float base_score;
/* \brief type of loss function */
int loss_type;
ModelParam( void ){
base_score = 0.5f;
loss_type = 0;
}
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam( const char *name, const char *val ){
if( !strcmp("base_score", name ) ) base_score = (float)atof( val );
if( !strcmp("loss_type", name ) ) loss_type = atoi( val );
}
/*!
* \brief adjust base_score
*/
inline void AdjustBase( void ){
if( loss_type == 1 ){
utils::Assert( base_score > 0.0f && base_score < 1.0f, "sigmoid range constrain" );
base_score = - logf( 1.0f / base_score - 1.0f );
}
}
/*!
* \brief calculate first order gradient of loss, given transformed prediction
* \param predt transformed prediction
* \param label true label
* \return first order gradient
*/
inline float FirstOrderGradient( float predt, float label ) const{
switch( loss_type ){
case LINEAR_SQUARE: return predt - label;
case 1: return predt - label;
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
/*!
* \brief calculate second order gradient of loss, given transformed prediction
* \param predt transformed prediction
* \param label true label
* \return second order gradient
*/
inline float SecondOrderGradient( float predt, float label ) const{
switch( loss_type ){
case LINEAR_SQUARE: return 1.0f;
case LOGISTIC_NEGLOGLIKELIHOOD: return predt * ( 1 - predt );
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
/*!
* \brief calculating the loss, given the predictions, labels and the loss type
* \param preds the given predictions
* \param labels the given labels
* \return the specified loss
*/
inline float Loss(const std::vector<float> &preds, const std::vector<float> &labels) const{
switch( loss_type ){
case LINEAR_SQUARE: return SquareLoss(preds,labels);
case LOGISTIC_NEGLOGLIKELIHOOD: return NegLoglikelihoodLoss(preds,labels);
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
/*!
* \brief calculating the square loss, given the predictions and labels
* \param preds the given predictions
* \param labels the given labels
* \return the summation of square loss
*/
inline float SquareLoss(const std::vector<float> &preds, const std::vector<float> &labels) const{
float ans = 0.0;
for(int i = 0; i < preds.size(); i++)
ans += pow(preds[i] - labels[i], 2);
return ans;
}
/*!
* \brief calculating the square loss, given the predictions and labels
* \param preds the given predictions
* \param labels the given labels
* \return the summation of square loss
*/
inline float NegLoglikelihoodLoss(const std::vector<float> &preds, const std::vector<float> &labels) const{
float ans = 0.0;
for(int i = 0; i < preds.size(); i++)
ans -= labels[i] * log(preds[i]) + ( 1 - labels[i] ) * log(1 - preds[i]);
return ans;
}
/*!
* \brief transform the linear sum to prediction
* \param x linear sum of boosting ensemble
* \return transformed prediction
*/
inline float PredTransform( float x ){
switch( loss_type ){
case LINEAR_SQUARE: return x;
case LOGISTIC_NEGLOGLIKELIHOOD: return 1.0f/(1.0f + expf(-x));
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
};
private:
booster::GBMBaseModel base_model;
ModelParam mparam;
const DMatrix *train_;
std::vector<const DMatrix *> evals_;
std::vector<std::string> evname_;
bool silent;
};
}
};
#endif