234 lines
7.9 KiB
C++
234 lines
7.9 KiB
C++
/*!
|
|
* Copyright 2015-2023 by Contributors
|
|
* \file multiclass_obj.cc
|
|
* \brief Definition of multi-class classification objectives.
|
|
*/
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <utility>
|
|
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
|
|
#pragma GCC diagnostic ignored "-W#pragma-messages"
|
|
#include "xgboost/parameter.h"
|
|
#include "xgboost/data.h"
|
|
#include "../../src/common/math.h"
|
|
#pragma GCC diagnostic pop
|
|
#include "xgboost/logging.h"
|
|
#include "xgboost/objective.h"
|
|
#include "xgboost/json.h"
|
|
#include "xgboost/span.h"
|
|
|
|
#include "../../../src/objective/multiclass_param.h"
|
|
|
|
#include "../common/linalg_op.h"
|
|
|
|
#include "../device_manager.h"
|
|
#include "../data.h"
|
|
#include <CL/sycl.hpp>
|
|
|
|
namespace xgboost {
|
|
namespace sycl {
|
|
namespace obj {
|
|
|
|
DMLC_REGISTRY_FILE_TAG(multiclass_obj_sycl);
|
|
|
|
class SoftmaxMultiClassObj : public ObjFunction {
|
|
mutable bool are_buffs_init = false;
|
|
|
|
void InitBuffers(const std::vector<int>& sample_rate) const {
|
|
if (!are_buffs_init) {
|
|
batch_processor_.InitBuffers(&qu_, sample_rate);
|
|
are_buffs_init = true;
|
|
}
|
|
}
|
|
|
|
public:
|
|
explicit SoftmaxMultiClassObj(bool output_prob)
|
|
: output_prob_(output_prob) {}
|
|
|
|
void Configure(Args const& args) override {
|
|
param_.UpdateAllowUnknown(args);
|
|
qu_ = device_manager.GetQueue(ctx_->Device());
|
|
}
|
|
|
|
void GetGradient(const HostDeviceVector<bst_float>& preds,
|
|
const MetaInfo& info,
|
|
int iter,
|
|
xgboost::linalg::Matrix<GradientPair>* out_gpair) override {
|
|
if (preds.Size() == 0) return;
|
|
if (info.labels.Size() == 0) return;
|
|
|
|
CHECK(preds.Size() == (static_cast<size_t>(param_.num_class) * info.labels.Size()))
|
|
<< "SoftmaxMultiClassObj: label size and pred size does not match.\n"
|
|
<< "label.Size() * num_class: "
|
|
<< info.labels.Size() * static_cast<size_t>(param_.num_class) << "\n"
|
|
<< "num_class: " << param_.num_class << "\n"
|
|
<< "preds.Size(): " << preds.Size();
|
|
|
|
const int nclass = param_.num_class;
|
|
const auto ndata = static_cast<int64_t>(preds.Size() / nclass);
|
|
|
|
out_gpair->Reshape(info.num_row_, static_cast<std::uint64_t>(nclass));
|
|
|
|
const bool is_null_weight = info.weights_.Size() == 0;
|
|
if (!is_null_weight) {
|
|
CHECK_EQ(info.weights_.Size(), ndata)
|
|
<< "Number of weights should be equal to number of data points.";
|
|
}
|
|
|
|
int flag = 1;
|
|
auto objective_fn = [=, &flag]
|
|
(const std::vector<::sycl::event>& events,
|
|
size_t ndata,
|
|
GradientPair* out_gpair,
|
|
const bst_float* preds,
|
|
const bst_float* labels,
|
|
const bst_float* weights) {
|
|
const size_t wg_size = 32;
|
|
const size_t nwgs = ndata / wg_size + (ndata % wg_size > 0);
|
|
return linalg::GroupWiseKernel(&qu_, &flag, events, {nwgs, wg_size},
|
|
[=] (size_t idx, auto flag) {
|
|
const bst_float* pred = preds + idx * nclass;
|
|
|
|
// Part of Softmax function
|
|
bst_float wmax = std::numeric_limits<bst_float>::min();
|
|
for (int k = 0; k < nclass; k++) { wmax = ::sycl::max(pred[k], wmax); }
|
|
bst_float wsum = 0.0f;
|
|
for (int k = 0; k < nclass; k++) { wsum += ::sycl::exp(pred[k] - wmax); }
|
|
bst_float label = labels[idx];
|
|
|
|
if (label < 0 || label >= nclass) {
|
|
AtomicRef<int> flag_ref(flag[0]);
|
|
flag_ref = 0;
|
|
label = 0;
|
|
}
|
|
|
|
bst_float wt = is_null_weight ? 1.0f : weights[idx];
|
|
for (int k = 0; k < nclass; ++k) {
|
|
bst_float p = expf(pred[k] - wmax) / static_cast<float>(wsum);
|
|
const float eps = 1e-16f;
|
|
const bst_float h = ::sycl::max(2.0f * p * (1.0f - p) * wt, eps);
|
|
p = label == k ? p - 1.0f : p;
|
|
out_gpair[idx * nclass + k] = GradientPair(p * wt, h);
|
|
}
|
|
});
|
|
};
|
|
|
|
// out_gpair and preds have nclass points per sample
|
|
// labels and weights have 1 points per sample
|
|
InitBuffers({nclass, nclass, 1, 1});
|
|
if (is_null_weight) {
|
|
// Output is passed by pointer
|
|
// Inputs are passed by const reference
|
|
batch_processor_.Calculate(std::move(objective_fn),
|
|
out_gpair->Data(),
|
|
preds,
|
|
*(info.labels.Data()));
|
|
} else {
|
|
batch_processor_.Calculate(std::move(objective_fn),
|
|
out_gpair->Data(),
|
|
preds,
|
|
*(info.labels.Data()),
|
|
info.weights_);
|
|
}
|
|
qu_.wait_and_throw();
|
|
|
|
if (flag == 0) {
|
|
LOG(FATAL) << "SYCL::SoftmaxMultiClassObj: label must be in [0, num_class).";
|
|
}
|
|
}
|
|
|
|
void PredTransform(HostDeviceVector<bst_float>* io_preds) const override {
|
|
this->Transform(io_preds, output_prob_);
|
|
}
|
|
void EvalTransform(HostDeviceVector<bst_float>* io_preds) override {
|
|
this->Transform(io_preds, true);
|
|
}
|
|
const char* DefaultEvalMetric() const override {
|
|
return "mlogloss";
|
|
}
|
|
|
|
inline void Transform(HostDeviceVector<bst_float> *io_preds, bool prob) const {
|
|
if (io_preds->Size() == 0) return;
|
|
const int nclass = param_.num_class;
|
|
const auto ndata = static_cast<int64_t>(io_preds->Size() / nclass);
|
|
max_preds_.Resize(ndata);
|
|
|
|
{
|
|
::sycl::buffer<bst_float, 1> io_preds_buf(io_preds->HostPointer(), io_preds->Size());
|
|
|
|
if (prob) {
|
|
qu_.submit([&](::sycl::handler& cgh) {
|
|
auto io_preds_acc = io_preds_buf.get_access<::sycl::access::mode::read_write>(cgh);
|
|
cgh.parallel_for<>(::sycl::range<1>(ndata), [=](::sycl::id<1> pid) {
|
|
int idx = pid[0];
|
|
auto it = io_preds_acc.begin() + idx * nclass;
|
|
common::Softmax(it, it + nclass);
|
|
});
|
|
}).wait();
|
|
} else {
|
|
::sycl::buffer<bst_float, 1> max_preds_buf(max_preds_.HostPointer(), max_preds_.Size());
|
|
|
|
qu_.submit([&](::sycl::handler& cgh) {
|
|
auto io_preds_acc = io_preds_buf.get_access<::sycl::access::mode::read>(cgh);
|
|
auto max_preds_acc = max_preds_buf.get_access<::sycl::access::mode::read_write>(cgh);
|
|
cgh.parallel_for<>(::sycl::range<1>(ndata), [=](::sycl::id<1> pid) {
|
|
int idx = pid[0];
|
|
auto it = io_preds_acc.begin() + idx * nclass;
|
|
max_preds_acc[idx] = common::FindMaxIndex(it, it + nclass) - it;
|
|
});
|
|
}).wait();
|
|
}
|
|
}
|
|
|
|
if (!prob) {
|
|
io_preds->Resize(max_preds_.Size());
|
|
io_preds->Copy(max_preds_);
|
|
}
|
|
}
|
|
|
|
struct ObjInfo Task() const override {return {ObjInfo::kClassification}; }
|
|
|
|
void SaveConfig(Json* p_out) const override {
|
|
auto& out = *p_out;
|
|
if (this->output_prob_) {
|
|
out["name"] = String("multi:softprob");
|
|
} else {
|
|
out["name"] = String("multi:softmax");
|
|
}
|
|
out["softmax_multiclass_param"] = ToJson(param_);
|
|
}
|
|
|
|
void LoadConfig(Json const& in) override {
|
|
FromJson(in["softmax_multiclass_param"], ¶m_);
|
|
}
|
|
|
|
private:
|
|
// output probability
|
|
bool output_prob_;
|
|
// parameter
|
|
xgboost::obj::SoftmaxMultiClassParam param_;
|
|
// Cache for max_preds
|
|
mutable HostDeviceVector<bst_float> max_preds_;
|
|
|
|
sycl::DeviceManager device_manager;
|
|
|
|
mutable ::sycl::queue qu_;
|
|
static constexpr size_t kBatchSize = 1u << 22;
|
|
mutable linalg::BatchProcessingHelper<GradientPair, bst_float, kBatchSize, 3> batch_processor_;
|
|
};
|
|
|
|
XGBOOST_REGISTER_OBJECTIVE(SoftmaxMultiClass, "multi:softmax_sycl")
|
|
.describe("Softmax for multi-class classification, output class index.")
|
|
.set_body([]() { return new SoftmaxMultiClassObj(false); });
|
|
|
|
XGBOOST_REGISTER_OBJECTIVE(SoftprobMultiClass, "multi:softprob_sycl")
|
|
.describe("Softmax for multi-class classification, output probability distribution.")
|
|
.set_body([]() { return new SoftmaxMultiClassObj(true); });
|
|
|
|
} // namespace obj
|
|
} // namespace sycl
|
|
} // namespace xgboost
|