Jiaming Yuan 001503186c
Rewrite approx (#7214)
This PR rewrites the approx tree method to use codebase from hist for better performance and code sharing.

The rewrite has many benefits:
- Support for both `max_leaves` and `max_depth`.
- Support for `grow_policy`.
- Support for mono constraint.
- Support for feature weights.
- Support for easier bin configuration (`max_bin`).
- Support for categorical data.
- Faster performance for most of the datasets. (many times faster)
- Support for prediction cache.
- Significantly better performance for external memory.
- Unites the code base between approx and hist.
2022-01-10 21:15:05 +08:00
2022-01-10 21:15:05 +08:00
2022-01-10 21:15:05 +08:00
2022-01-10 21:15:05 +08:00
2021-10-11 21:39:50 +08:00
2022-01-10 21:15:05 +08:00
2022-01-10 21:15:05 +08:00
2022-01-10 21:15:05 +08:00
2022-01-10 21:15:05 +08:00
2021-11-02 13:34:38 +08:00
2020-04-05 04:42:29 +08:00
2017-12-01 02:58:13 -08:00
2021-10-07 16:07:34 +08:00
2021-11-17 21:02:20 -08:00
2021-10-20 12:49:36 +08:00
2021-10-21 13:43:31 +08:00
2021-08-17 03:37:53 +08:00

eXtreme Gradient Boosting

Build Status Build Status XGBoost-CI Documentation Status GitHub license CRAN Status Badge PyPI version Conda version Optuna Twitter

Community | Documentation | Resources | Contributors | Release Notes

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Kubernetes, Hadoop, SGE, MPI, Dask) and can solve problems beyond billions of examples.

License

© Contributors, 2021. Licensed under an Apache-2 license.

Contribute to XGBoost

XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone. Checkout the Community Page.

Reference

  • Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016
  • XGBoost originates from research project at University of Washington.

Sponsors

Become a sponsor and get a logo here. See details at Sponsoring the XGBoost Project. The funds are used to defray the cost of continuous integration and testing infrastructure (https://xgboost-ci.net).

Open Source Collective sponsors

Backers on Open Collective Sponsors on Open Collective

Sponsors

[Become a sponsor]

NVIDIA

Backers

[Become a backer]

Other sponsors

The sponsors in this list are donating cloud hours in lieu of cash donation.

Amazon Web Services

Description
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Readme 33 MiB
Languages
C++ 45.5%
Python 20.3%
Cuda 15.2%
R 6.8%
Scala 6.4%
Other 5.6%