xgboost/tests/cpp/tree/gpu_hist/test_row_partitioner.cu
Jiaming Yuan 97abcc7ee2
Extract interaction constraint from split evaluator. (#5034)
*  Extract interaction constraints from split evaluator.

The reason for doing so is mostly for model IO, where num_feature and interaction_constraints are copied in split evaluator. Also interaction constraint by itself is a feature selector, acting like column sampler and it's inefficient to bury it deep in the evaluator chain. Lastly removing one another copied parameter is a win.

*  Enable inc for approx tree method.

As now the implementation is spited up from evaluator class, it's also enabled for approx method.

*  Removing obsoleted code in colmaker.

They are never documented nor actually used in real world. Also there isn't a single test for those code blocks.

*  Unifying the types used for row and column.

As the size of input dataset is marching to billion, incorrect use of int is subject to overflow, also singed integer overflow is undefined behaviour. This PR starts the procedure for unifying used index type to unsigned integers. There's optimization that can utilize this undefined behaviour, but after some testings I don't see the optimization is beneficial to XGBoost.
2019-11-14 20:11:41 +08:00

127 lines
3.8 KiB
Plaintext

#include <gtest/gtest.h>
#include <vector>
#include <thrust/device_vector.h>
#include <thrust/sequence.h>
#include "../../../../src/tree/gpu_hist/row_partitioner.cuh"
#include "../../helpers.h"
namespace xgboost {
namespace tree {
void TestSortPosition(const std::vector<int>& position_in, int left_idx,
int right_idx) {
dh::safe_cuda(cudaSetDevice(0));
std::vector<int64_t> left_count = {
std::count(position_in.begin(), position_in.end(), left_idx)};
dh::caching_device_vector<int64_t> d_left_count = left_count;
dh::caching_device_vector<int> position = position_in;
dh::caching_device_vector<int> position_out(position.size());
dh::caching_device_vector<RowPartitioner::RowIndexT> ridx(position.size());
thrust::sequence(ridx.begin(), ridx.end());
dh::caching_device_vector<RowPartitioner::RowIndexT> ridx_out(ridx.size());
RowPartitioner rp(0,10);
rp.SortPosition(
common::Span<int>(position.data().get(), position.size()),
common::Span<int>(position_out.data().get(), position_out.size()),
common::Span<RowPartitioner::RowIndexT>(ridx.data().get(), ridx.size()),
common::Span<RowPartitioner::RowIndexT>(ridx_out.data().get(), ridx_out.size()), left_idx,
right_idx, d_left_count.data().get(), nullptr);
thrust::host_vector<int> position_result = position_out;
thrust::host_vector<int> ridx_result = ridx_out;
// Check position is sorted
EXPECT_TRUE(std::is_sorted(position_result.begin(), position_result.end()));
// Check row indices are sorted inside left and right segment
EXPECT_TRUE(
std::is_sorted(ridx_result.begin(), ridx_result.begin() + left_count[0]));
EXPECT_TRUE(
std::is_sorted(ridx_result.begin() + left_count[0], ridx_result.end()));
// Check key value pairs are the same
for (auto i = 0ull; i < ridx_result.size(); i++) {
EXPECT_EQ(position_result[i], position_in[ridx_result[i]]);
}
}
TEST(GpuHist, SortPosition) {
TestSortPosition({1, 2, 1, 2, 1}, 1, 2);
TestSortPosition({1, 1, 1, 1}, 1, 2);
TestSortPosition({2, 2, 2, 2}, 1, 2);
TestSortPosition({1, 2, 1, 2, 3}, 1, 2);
}
void TestUpdatePosition() {
const int kNumRows = 10;
RowPartitioner rp(0, kNumRows);
auto rows = rp.GetRowsHost(0);
EXPECT_EQ(rows.size(), kNumRows);
for (auto i = 0ull; i < kNumRows; i++) {
EXPECT_EQ(rows[i], i);
}
// Send the first five training instances to the right node
// and the second 5 to the left node
rp.UpdatePosition(0, 1, 2,
[=] __device__(RowPartitioner::RowIndexT ridx) {
if (ridx > 4) {
return 1;
}
else {
return 2;
}
});
rows = rp.GetRowsHost(1);
for (auto r : rows) {
EXPECT_GT(r, 4);
}
rows = rp.GetRowsHost(2);
for (auto r : rows) {
EXPECT_LT(r, 5);
}
// Split the left node again
rp.UpdatePosition(1, 3, 4, [=]__device__(RowPartitioner::RowIndexT ridx)
{
if (ridx < 7) {
return 3
;
}
return 4;
});
EXPECT_EQ(rp.GetRows(3).size(), 2);
EXPECT_EQ(rp.GetRows(4).size(), 3);
// Check position is as expected
EXPECT_EQ(rp.GetPositionHost(), std::vector<bst_node_t>({3,3,4,4,4,2,2,2,2,2}));
}
TEST(RowPartitioner, Basic) { TestUpdatePosition(); }
void TestFinalise() {
const int kNumRows = 10;
RowPartitioner rp(0, kNumRows);
rp.FinalisePosition([=]__device__(RowPartitioner::RowIndexT ridx, int position)
{
return 7;
});
auto position = rp.GetPositionHost();
for(auto p:position)
{
EXPECT_EQ(p, 7);
}
}
TEST(RowPartitioner, Finalise) { TestFinalise(); }
void TestIncorrectRow() {
RowPartitioner rp(0, 1);
rp.UpdatePosition(0, 1, 2, [=]__device__ (RowPartitioner::RowIndexT ridx)
{
return 4; // This is not the left branch or the right branch
});
}
TEST(RowPartitioner, IncorrectRow) {
ASSERT_DEATH({ TestIncorrectRow(); },".*");
}
} // namespace tree
} // namespace xgboost