xgboost/src/data/simple_dmatrix.cu
Jiaming Yuan 0012f2ef93
Upgrade clang-tidy on CI. (#5469)
* Correct all clang-tidy errors.
* Upgrade clang-tidy to 10 on CI.

Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
2020-04-05 04:42:29 +08:00

138 lines
5.2 KiB
Plaintext

/*!
* Copyright 2019 by Contributors
* \file simple_dmatrix.cu
*/
#include <thrust/copy.h>
#include <thrust/execution_policy.h>
#include <thrust/sort.h>
#include <xgboost/data.h>
#include "../common/random.h"
#include "./simple_dmatrix.h"
#include "device_adapter.cuh"
namespace xgboost {
namespace data {
template <typename AdapterBatchT>
void CountRowOffsets(const AdapterBatchT& batch, common::Span<bst_row_t> offset,
int device_idx, float missing) {
IsValidFunctor is_valid(missing);
// Count elements per row
dh::LaunchN(device_idx, batch.Size(), [=] __device__(size_t idx) {
auto element = batch.GetElement(idx);
if (is_valid(element)) {
atomicAdd(reinterpret_cast<unsigned long long*>( // NOLINT
&offset[element.row_idx]),
static_cast<unsigned long long>(1)); // NOLINT
}
});
dh::XGBCachingDeviceAllocator<char> alloc;
thrust::exclusive_scan(thrust::cuda::par(alloc),
thrust::device_pointer_cast(offset.data()),
thrust::device_pointer_cast(offset.data() + offset.size()),
thrust::device_pointer_cast(offset.data()));
}
template <typename AdapterT>
void CopyDataColumnMajor(AdapterT* adapter, common::Span<Entry> data,
int device_idx, float missing,
common::Span<size_t> row_ptr) {
// Step 1: Get the sizes of the input columns
dh::device_vector<size_t> column_sizes(adapter->NumColumns());
auto d_column_sizes = column_sizes.data().get();
auto& batch = adapter->Value();
// Populate column sizes
dh::LaunchN(device_idx, batch.Size(), [=] __device__(size_t idx) {
const auto& e = batch.GetElement(idx);
atomicAdd(reinterpret_cast<unsigned long long*>( // NOLINT
&d_column_sizes[e.column_idx]),
static_cast<unsigned long long>(1)); // NOLINT
});
thrust::host_vector<size_t> host_column_sizes = column_sizes;
// Step 2: Iterate over columns, place elements in correct row, increment
// temporary row pointers
dh::device_vector<size_t> temp_row_ptr(
thrust::device_pointer_cast(row_ptr.data()),
thrust::device_pointer_cast(row_ptr.data() + row_ptr.size()));
auto d_temp_row_ptr = temp_row_ptr.data().get();
size_t begin = 0;
IsValidFunctor is_valid(missing);
for (auto size : host_column_sizes) {
size_t end = begin + size;
dh::LaunchN(device_idx, end - begin, [=] __device__(size_t idx) {
const auto& e = batch.GetElement(idx + begin);
if (!is_valid(e)) return;
data[d_temp_row_ptr[e.row_idx]] = Entry(e.column_idx, e.value);
d_temp_row_ptr[e.row_idx] += 1;
});
begin = end;
}
}
// Here the data is already correctly ordered and simply needs to be compacted
// to remove missing data
template <typename AdapterT>
void CopyDataRowMajor(AdapterT* adapter, common::Span<Entry> data,
int device_idx, float missing,
common::Span<size_t> row_ptr) {
auto& batch = adapter->Value();
auto transform_f = [=] __device__(size_t idx) {
const auto& e = batch.GetElement(idx);
return Entry(e.column_idx, e.value);
}; // NOLINT
auto counting = thrust::make_counting_iterator(0llu);
thrust::transform_iterator<decltype(transform_f), decltype(counting), Entry>
transform_iter(counting, transform_f);
dh::XGBCachingDeviceAllocator<char> alloc;
thrust::copy_if(
thrust::cuda::par(alloc), transform_iter, transform_iter + batch.Size(),
thrust::device_pointer_cast(data.data()), IsValidFunctor(missing));
}
// Does not currently support metainfo as no on-device data source contains this
// Current implementation assumes a single batch. More batches can
// be supported in future. Does not currently support inferring row/column size
template <typename AdapterT>
SimpleDMatrix::SimpleDMatrix(AdapterT* adapter, float missing, int nthread) {
CHECK(adapter->NumRows() != kAdapterUnknownSize);
CHECK(adapter->NumColumns() != kAdapterUnknownSize);
adapter->BeforeFirst();
adapter->Next();
auto& batch = adapter->Value();
sparse_page_.offset.SetDevice(adapter->DeviceIdx());
sparse_page_.data.SetDevice(adapter->DeviceIdx());
// Enforce single batch
CHECK(!adapter->Next());
sparse_page_.offset.Resize(adapter->NumRows() + 1);
auto s_offset = sparse_page_.offset.DeviceSpan();
CountRowOffsets(batch, s_offset, adapter->DeviceIdx(), missing);
info_.num_nonzero_ = sparse_page_.offset.HostVector().back();
sparse_page_.data.Resize(info_.num_nonzero_);
if (adapter->IsRowMajor()) {
CopyDataRowMajor(adapter, sparse_page_.data.DeviceSpan(),
adapter->DeviceIdx(), missing, s_offset);
} else {
CopyDataColumnMajor(adapter, sparse_page_.data.DeviceSpan(),
adapter->DeviceIdx(), missing, s_offset);
}
info_.num_col_ = adapter->NumColumns();
info_.num_row_ = adapter->NumRows();
// Synchronise worker columns
rabit::Allreduce<rabit::op::Max>(&info_.num_col_, 1);
}
template SimpleDMatrix::SimpleDMatrix(CudfAdapter* adapter, float missing,
int nthread);
template SimpleDMatrix::SimpleDMatrix(CupyAdapter* adapter, float missing,
int nthread);
} // namespace data
} // namespace xgboost