/*! * Copyright 2021-2022, XGBoost contributors. */ #include #include "../../../src/tree/updater_approx.h" #include "../helpers.h" #include "test_partitioner.h" namespace xgboost { namespace tree { TEST(Approx, Partitioner) { size_t n_samples = 1024, n_features = 1, base_rowid = 0; ApproxRowPartitioner partitioner{n_samples, base_rowid}; ASSERT_EQ(partitioner.base_rowid, base_rowid); ASSERT_EQ(partitioner.Size(), 1); ASSERT_EQ(partitioner.Partitions()[0].Size(), n_samples); auto Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true); GenericParameter ctx; ctx.InitAllowUnknown(Args{}); std::vector candidates{{0, 0, 0.4}}; auto grad = GenerateRandomGradients(n_samples); std::vector hess(grad.Size()); std::transform(grad.HostVector().cbegin(), grad.HostVector().cend(), hess.begin(), [](auto gpair) { return gpair.GetHess(); }); for (auto const& page : Xy->GetBatches({64, hess, true})) { bst_feature_t const split_ind = 0; { auto min_value = page.cut.MinValues()[split_ind]; RegTree tree; ApproxRowPartitioner partitioner{n_samples, base_rowid}; GetSplit(&tree, min_value, &candidates); partitioner.UpdatePosition(&ctx, page, candidates, &tree); ASSERT_EQ(partitioner.Size(), 3); ASSERT_EQ(partitioner[1].Size(), 0); ASSERT_EQ(partitioner[2].Size(), n_samples); } { ApproxRowPartitioner partitioner{n_samples, base_rowid}; auto ptr = page.cut.Ptrs()[split_ind + 1]; float split_value = page.cut.Values().at(ptr / 2); RegTree tree; GetSplit(&tree, split_value, &candidates); partitioner.UpdatePosition(&ctx, page, candidates, &tree); auto left_nidx = tree[RegTree::kRoot].LeftChild(); auto elem = partitioner[left_nidx]; ASSERT_LT(elem.Size(), n_samples); ASSERT_GT(elem.Size(), 1); for (auto it = elem.begin; it != elem.end; ++it) { auto value = page.cut.Values().at(page.index[*it]); ASSERT_LE(value, split_value); } auto right_nidx = tree[RegTree::kRoot].RightChild(); elem = partitioner[right_nidx]; for (auto it = elem.begin; it != elem.end; ++it) { auto value = page.cut.Values().at(page.index[*it]); ASSERT_GT(value, split_value) << *it; } } } } namespace { void TestLeafPartition(size_t n_samples) { size_t const n_features = 2, base_rowid = 0; common::RowSetCollection row_set; ApproxRowPartitioner partitioner{n_samples, base_rowid}; auto Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true); GenericParameter ctx; std::vector candidates{{0, 0, 0.4}}; RegTree tree; std::vector hess(n_samples, 0); // emulate sampling auto not_sampled = [](size_t i) { size_t const kSampleFactor{3}; return i % kSampleFactor != 0; }; size_t n{0}; for (size_t i = 0; i < hess.size(); ++i) { if (not_sampled(i)) { hess[i] = 1.0f; ++n; } } std::vector h_nptr; float split_value{0}; for (auto const& page : Xy->GetBatches({Context::kCpuId, 64})) { bst_feature_t const split_ind = 0; auto ptr = page.cut.Ptrs()[split_ind + 1]; split_value = page.cut.Values().at(ptr / 2); GetSplit(&tree, split_value, &candidates); partitioner.UpdatePosition(&ctx, page, candidates, &tree); std::vector position; partitioner.LeafPartition(&ctx, tree, hess, &position); std::sort(position.begin(), position.end()); size_t beg = std::distance( position.begin(), std::find_if(position.begin(), position.end(), [&](bst_node_t nidx) { return nidx >= 0; })); std::vector nptr; common::RunLengthEncode(position.cbegin() + beg, position.cend(), &nptr); std::transform(nptr.begin(), nptr.end(), nptr.begin(), [&](size_t x) { return x + beg; }); auto n_uniques = std::unique(position.begin() + beg, position.end()) - (position.begin() + beg); ASSERT_EQ(nptr.size(), n_uniques + 1); ASSERT_EQ(nptr[0], beg); ASSERT_EQ(nptr.back(), n_samples); h_nptr = nptr; } if (h_nptr.front() == n_samples) { return; } ASSERT_GE(h_nptr.size(), 2); for (auto const& page : Xy->GetBatches()) { auto batch = page.GetView(); size_t left{0}; for (size_t i = 0; i < batch.Size(); ++i) { if (not_sampled(i) && batch[i].front().fvalue < split_value) { left++; } } ASSERT_EQ(left, h_nptr[1] - h_nptr[0]); // equal to number of sampled assigned to left } } } // anonymous namespace TEST(Approx, LeafPartition) { for (auto n_samples : {0ul, 1ul, 128ul, 256ul}) { TestLeafPartition(n_samples); } } } // namespace tree } // namespace xgboost