# -*- coding: utf-8 -*- import numpy as np import xgboost as xgb import unittest dpath = 'demo/data/' class TestBasic(unittest.TestCase): def test_basic(self): dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train') dtest = xgb.DMatrix(dpath + 'agaricus.txt.test') param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' } # specify validations set to watch performance watchlist = [(dtest,'eval'), (dtrain,'train')] num_round = 2 bst = xgb.train(param, dtrain, num_round, watchlist) # this is prediction preds = bst.predict(dtest) labels = dtest.get_label() err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds)) # error must be smaller than 10% assert err < 0.1 # save dmatrix into binary buffer dtest.save_binary('dtest.buffer') # save model bst.save_model('xgb.model') # load model and data in bst2 = xgb.Booster(model_file='xgb.model') dtest2 = xgb.DMatrix('dtest.buffer') preds2 = bst2.predict(dtest2) # assert they are the same assert np.sum(np.abs(preds2-preds)) == 0 def test_dmatrix_init(self): data = np.random.randn(5, 5) # different length self.assertRaises(ValueError, xgb.DMatrix, data, feature_names=list('abcdef')) # contains duplicates self.assertRaises(ValueError, xgb.DMatrix, data, feature_names=['a', 'b', 'c', 'd', 'd']) # contains symbol self.assertRaises(ValueError, xgb.DMatrix, data, feature_names=['a', 'b', 'c', 'd', 'e=1']) def test_feature_names(self): data = np.random.randn(100, 5) target = np.array([0, 1] * 50) cases = [['Feature1', 'Feature2', 'Feature3', 'Feature4', 'Feature5'], [u'要因1', u'要因2', u'要因3', u'要因4', u'要因5']] for features in cases: dm = xgb.DMatrix(data, label=target, feature_names=features) assert dm.feature_names == features assert dm.num_row() == 100 assert dm.num_col() == 5 params={'objective': 'multi:softprob', 'eval_metric': 'mlogloss', 'eta': 0.3, 'num_class': 3} bst = xgb.train(params, dm, num_boost_round=10) scores = bst.get_fscore() assert list(sorted(k for k in scores)) == features dummy = np.random.randn(5, 5) dm = xgb.DMatrix(dummy, feature_names=features) bst.predict(dm) # different feature name must raises error dm = xgb.DMatrix(dummy, feature_names=list('abcde')) self.assertRaises(ValueError, bst.predict, dm) def test_load_file_invalid(self): self.assertRaises(ValueError, xgb.Booster, model_file='incorrect_path') self.assertRaises(ValueError, xgb.Booster, model_file=u'不正なパス') def test_dmatrix_numpy_init(self): data = np.random.randn(5, 5) dm = xgb.DMatrix(data) assert dm.num_row() == 5 assert dm.num_col() == 5 data = np.matrix([[1, 2], [3, 4]]) dm = xgb.DMatrix(data) assert dm.num_row() == 2 assert dm.num_col() == 2 # 0d array self.assertRaises(ValueError, xgb.DMatrix, np.array(1)) # 1d array self.assertRaises(ValueError, xgb.DMatrix, np.array([1, 2, 3])) # 3d array data = np.random.randn(5, 5, 5) self.assertRaises(ValueError, xgb.DMatrix, data) # object dtype data = np.array([['a', 'b'], ['c', 'd']]) self.assertRaises(ValueError, xgb.DMatrix, data) def test_plotting(self): bst2 = xgb.Booster(model_file='xgb.model') # plotting import matplotlib matplotlib.use('Agg') from matplotlib.axes import Axes from graphviz import Digraph ax = xgb.plot_importance(bst2) assert isinstance(ax, Axes) assert ax.get_title() == 'Feature importance' assert ax.get_xlabel() == 'F score' assert ax.get_ylabel() == 'Features' assert len(ax.patches) == 4 ax = xgb.plot_importance(bst2, color='r', title='t', xlabel='x', ylabel='y') assert isinstance(ax, Axes) assert ax.get_title() == 't' assert ax.get_xlabel() == 'x' assert ax.get_ylabel() == 'y' assert len(ax.patches) == 4 for p in ax.patches: assert p.get_facecolor() == (1.0, 0, 0, 1.0) # red ax = xgb.plot_importance(bst2, color=['r', 'r', 'b', 'b'], title=None, xlabel=None, ylabel=None) assert isinstance(ax, Axes) assert ax.get_title() == '' assert ax.get_xlabel() == '' assert ax.get_ylabel() == '' assert len(ax.patches) == 4 assert ax.patches[0].get_facecolor() == (1.0, 0, 0, 1.0) # red assert ax.patches[1].get_facecolor() == (1.0, 0, 0, 1.0) # red assert ax.patches[2].get_facecolor() == (0, 0, 1.0, 1.0) # blue assert ax.patches[3].get_facecolor() == (0, 0, 1.0, 1.0) # blue g = xgb.to_graphviz(bst2, num_trees=0) assert isinstance(g, Digraph) ax = xgb.plot_tree(bst2, num_trees=0) assert isinstance(ax, Axes)