#' Save xgboost model to text file #' #' Save a xgboost model to text file. Could be parsed later. #' #' @importFrom magrittr %>% #' @importFrom stringr str_replace #' @importFrom data.table fread #' @importFrom data.table := #' @importFrom data.table setnames #' @param model the model object. #' @param fname the name of the text file where to save the model text dump. If not provided or set to \code{NULL} the function will return the model as a \code{character} vector. #' @param fmap feature map file representing the type of feature. #' Detailed description could be found at #' \url{https://github.com/tqchen/xgboost/wiki/Binary-Classification#dump-model}. #' See demo/ for walkthrough example in R, and #' \url{https://github.com/tqchen/xgboost/blob/master/demo/data/featmap.txt} #' for example Format. #' @param with.stats whether dump statistics of splits #' When this option is on, the model dump comes with two additional statistics: #' gain is the approximate loss function gain we get in each split; #' cover is the sum of second order gradient in each node. #' #' @return #' if fname is not provided or set to \code{NULL} the function will return the model as a \code{character} vector. Otherwise it will return \code{TRUE}. #' #' @examples #' data(agaricus.train, package='xgboost') #' data(agaricus.test, package='xgboost') #' train <- agaricus.train #' test <- agaricus.test #' bst <- xgboost(data = train$data, label = train$label, max.depth = 2, #' eta = 1, nround = 2,objective = "binary:logistic") #' # save the model in file 'xgb.model.dump' #' xgb.dump(bst, 'xgb.model.dump', with.stats = TRUE) #' #' # print the model without saving it to a file #' print(xgb.dump(bst)) #' @export #' xgb.dump <- function(model = NULL, fname = NULL, fmap = "", with.stats=FALSE) { if (class(model) != "xgb.Booster") { stop("model: argument must be type xgb.Booster") } if (!(class(fname) %in% c("character", "NULL") && length(fname) <= 1)) { stop("fname: argument must be type character (when provided)") } if (!(class(fmap) %in% c("character", "NULL") && length(fname) <= 1)) { stop("fmap: argument must be type character (when provided)") } longString <- .Call("XGBoosterDumpModel_R", model, fmap, as.integer(with.stats), PACKAGE = "xgboost") dt <- fread(paste(longString, collapse = ""), sep = "\n", header = F) setnames(dt, "Lines") if(is.null(fname)) { result <- dt[Lines != "0"][, Lines := str_replace(Lines, "^\t+", "")][Lines != ""][, paste(Lines)] return(result) } else { result <- dt[Lines != "0"][Lines != ""][, paste(Lines)] %>% writeLines(fname) return(TRUE) } } # Avoid error messages during CRAN check. # The reason is that these variables are never declared # They are mainly column names inferred by Data.table... globalVariables(c("Lines", "."))