% Generated by roxygen2 (4.1.0): do not edit by hand % Please edit documentation in R/xgb.dump.R \name{xgb.dump} \alias{xgb.dump} \title{Save xgboost model to text file} \usage{ xgb.dump(model = NULL, fname = NULL, fmap = "", with.stats = FALSE) } \arguments{ \item{model}{the model object.} \item{fname}{the name of the text file where to save the model text dump. If not provided or set to \code{NULL} the function will return the model as a \code{character} vector.} \item{fmap}{feature map file representing the type of feature. Detailed description could be found at \url{https://github.com/tqchen/xgboost/wiki/Binary-Classification#dump-model}. See demo/ for walkthrough example in R, and \url{https://github.com/tqchen/xgboost/blob/master/demo/data/featmap.txt} for example Format.} \item{with.stats}{whether dump statistics of splits When this option is on, the model dump comes with two additional statistics: gain is the approximate loss function gain we get in each split; cover is the sum of second order gradient in each node.} } \value{ if fname is not provided or set to \code{NULL} the function will return the model as a \code{character} vector. Otherwise it will return \code{TRUE}. } \description{ Save a xgboost model to text file. Could be parsed later. } \examples{ data(agaricus.train, package='xgboost') data(agaricus.test, package='xgboost') train <- agaricus.train test <- agaricus.test bst <- xgboost(data = train$data, label = train$label, max.depth = 2, eta = 1, nround = 2,objective = "binary:logistic") # save the model in file 'xgb.model.dump' xgb.dump(bst, 'xgb.model.dump', with.stats = T) # print the model without saving it to a file print(xgb.dump(bst)) }