context('Test helper functions') require(xgboost) require(data.table) require(Matrix) require(vcd) set.seed(1982) data(Arthritis) df <- data.table(Arthritis, keep.rownames = F) df[,AgeDiscret := as.factor(round(Age / 10,0))] df[,AgeCat := as.factor(ifelse(Age > 30, "Old", "Young"))] df[,ID := NULL] sparse_matrix <- sparse.model.matrix(Improved~.-1, data = df) label <- df[, ifelse(Improved == "Marked", 1, 0)] bst.Tree <- xgboost(data = sparse_matrix, label = label, max.depth = 9, eta = 1, nthread = 2, nround = 10, objective = "binary:logistic", booster = "gbtree") bst.GLM <- xgboost(data = sparse_matrix, label = label, eta = 1, nthread = 2, nround = 10, objective = "binary:logistic", booster = "gblinear") feature.names <- colnames(sparse_matrix) test_that("xgb.dump works", { expect_length(xgb.dump(bst.Tree), 172) expect_length(xgb.dump(bst.GLM), 14) expect_true(xgb.dump(bst.Tree, 'xgb.model.dump', with.stats = T)) expect_true(file.exists('xgb.model.dump')) expect_gt(file.size('xgb.model.dump'), 8000) }) test_that("xgb-attribute functionality", { val <- "my attribute value" list.val <- list(my_attr=val, a=123, b='ok') list.ch <- list.val[order(names(list.val))] list.ch <- lapply(list.ch, as.character) # proper input: expect_error(xgb.attr(bst.Tree, NULL)) expect_error(xgb.attr(val, val)) # set & get: expect_null(xgb.attr(bst.Tree, "asdf")) expect_null(xgb.attributes(bst.Tree)) # initially, expect no attributes xgb.attr(bst.Tree, "my_attr") <- val expect_equal(xgb.attr(bst.Tree, "my_attr"), val) xgb.attributes(bst.Tree) <- list.val expect_equal(xgb.attributes(bst.Tree), list.ch) # serializing: xgb.save(bst.Tree, 'xgb.model') bst <- xgb.load('xgb.model') expect_equal(xgb.attr(bst, "my_attr"), val) expect_equal(xgb.attributes(bst), list.ch) # deletion: xgb.attr(bst, "my_attr") <- NULL expect_null(xgb.attr(bst, "my_attr")) expect_equal(xgb.attributes(bst), list.ch[c("a", "b")]) xgb.attributes(bst) <- list(a=NULL, b=NULL) expect_null(xgb.attributes(bst)) }) test_that("xgb.model.dt.tree works with and without feature names", { names.dt.trees <- c("Tree", "Node", "ID", "Feature", "Split", "Yes", "No", "Missing", "Quality", "Cover") dt.tree <- xgb.model.dt.tree(feature_names = feature.names, model = bst.Tree) expect_equal(names.dt.trees, names(dt.tree)) expect_equal(dim(dt.tree), c(162, 10)) expect_output(str(xgb.model.dt.tree(model = bst.Tree)), 'Feature.*\\"3\\"') }) test_that("xgb.importance works with and without feature names", { importance.Tree <- xgb.importance(feature_names = feature.names, model = bst.Tree) expect_equal(dim(importance.Tree), c(7, 4)) expect_equal(colnames(importance.Tree), c("Feature", "Gain", "Cover", "Frequency")) expect_output(str(xgb.importance(model = bst.Tree)), 'Feature.*\\"3\\"') xgb.plot.importance(importance_matrix = importance.Tree) }) test_that("xgb.importance works with GLM model", { importance.GLM <- xgb.importance(feature_names = feature.names, model = bst.GLM) expect_equal(dim(importance.GLM), c(10, 2)) expect_equal(colnames(importance.GLM), c("Feature", "Weight")) xgb.importance(model = bst.GLM) xgb.plot.importance(importance.GLM) }) test_that("xgb.plot.tree works with and without feature names", { xgb.plot.tree(feature_names = feature.names, model = bst.Tree) xgb.plot.tree(model = bst.Tree) }) test_that("xgb.plot.multi.trees works with and without feature names", { xgb.plot.multi.trees(model = bst.Tree, feature_names = feature.names, features.keep = 3) xgb.plot.multi.trees(model = bst.Tree, features.keep = 3) }) test_that("xgb.plot.deepness works", { xgb.plot.deepness(model = bst.Tree) })