#include #include "test_quantile.h" #include "../helpers.h" #include "../../../src/common/hist_util.cuh" #include "../../../src/common/quantile.cuh" namespace xgboost { namespace common { TEST(GPUQuantile, Basic) { constexpr size_t kRows = 1000, kCols = 100, kBins = 256; SketchContainer sketch(kBins, kCols, kRows, 0); dh::caching_device_vector entries; dh::device_vector cuts_ptr(kCols+1); thrust::fill(cuts_ptr.begin(), cuts_ptr.end(), 0); // Push empty sketch.Push(dh::ToSpan(cuts_ptr), &entries); ASSERT_EQ(sketch.Data().size(), 0); } void TestSketchUnique(float sparsity) { constexpr size_t kRows = 1000, kCols = 100; RunWithSeedsAndBins(kRows, [kRows, kCols, sparsity](int32_t seed, size_t n_bins, MetaInfo const& info) { SketchContainer sketch(n_bins, kCols, kRows, 0); HostDeviceVector storage; std::string interface_str = RandomDataGenerator{kRows, kCols, sparsity} .Seed(seed) .Device(0) .GenerateArrayInterface(&storage); data::CupyAdapter adapter(interface_str); AdapterDeviceSketch(adapter.Value(), n_bins, info, std::numeric_limits::quiet_NaN(), &sketch); auto n_cuts = detail::RequiredSampleCutsPerColumn(n_bins, kRows); dh::caching_device_vector column_sizes_scan; HostDeviceVector cut_sizes_scan; auto batch = adapter.Value(); data::IsValidFunctor is_valid(std::numeric_limits::quiet_NaN()); auto batch_iter = dh::MakeTransformIterator( thrust::make_counting_iterator(0llu), [=] __device__(size_t idx) { return batch.GetElement(idx); }); auto end = kCols * kRows; detail::GetColumnSizesScan(0, kCols, n_cuts, batch_iter, is_valid, 0, end, &cut_sizes_scan, &column_sizes_scan); auto const& cut_sizes = cut_sizes_scan.HostVector(); if (sparsity == 0) { ASSERT_EQ(sketch.Data().size(), n_cuts * kCols); } else { ASSERT_EQ(sketch.Data().size(), cut_sizes.back()); } sketch.Unique(); ASSERT_TRUE(thrust::is_sorted(thrust::device, sketch.Data().data(), sketch.Data().data() + sketch.Data().size(), detail::SketchUnique{})); }); } TEST(GPUQuantile, Unique) { TestSketchUnique(0); TestSketchUnique(0.5); } // if with_error is true, the test tolerates floating point error void TestQuantileElemRank(int32_t device, Span in, Span d_columns_ptr, bool with_error = false) { dh::LaunchN(device, in.size(), [=]XGBOOST_DEVICE(size_t idx) { auto column_id = dh::SegmentId(d_columns_ptr, idx); auto in_column = in.subspan(d_columns_ptr[column_id], d_columns_ptr[column_id + 1] - d_columns_ptr[column_id]); auto constexpr kEps = 1e-6f; idx -= d_columns_ptr[column_id]; float prev_rmin = idx == 0 ? 0.0f : in_column[idx-1].rmin; float prev_rmax = idx == 0 ? 0.0f : in_column[idx-1].rmax; float rmin_next = in_column[idx].RMinNext(); if (with_error) { SPAN_CHECK(in_column[idx].rmin + in_column[idx].rmin * kEps >= prev_rmin); SPAN_CHECK(in_column[idx].rmax + in_column[idx].rmin * kEps >= prev_rmax); SPAN_CHECK(in_column[idx].rmax + in_column[idx].rmin * kEps >= rmin_next); } else { SPAN_CHECK(in_column[idx].rmin >= prev_rmin); SPAN_CHECK(in_column[idx].rmax >= prev_rmax); SPAN_CHECK(in_column[idx].rmax >= rmin_next); } }); // Force sync to terminate current test instead of a later one. dh::DebugSyncDevice(__FILE__, __LINE__); } TEST(GPUQuantile, Prune) { constexpr size_t kRows = 1000, kCols = 100; RunWithSeedsAndBins(kRows, [=](int32_t seed, size_t n_bins, MetaInfo const& info) { SketchContainer sketch(n_bins, kCols, kRows, 0); HostDeviceVector storage; std::string interface_str = RandomDataGenerator{kRows, kCols, 0} .Device(0) .Seed(seed) .GenerateArrayInterface(&storage); data::CupyAdapter adapter(interface_str); AdapterDeviceSketch(adapter.Value(), n_bins, info, std::numeric_limits::quiet_NaN(), &sketch); auto n_cuts = detail::RequiredSampleCutsPerColumn(n_bins, kRows); ASSERT_EQ(sketch.Data().size(), n_cuts * kCols); sketch.Prune(n_bins); if (n_bins <= kRows) { ASSERT_EQ(sketch.Data().size(), n_bins * kCols); } else { // LE because kRows * kCols is pushed into sketch, after removing duplicated entries // we might not have that much inputs for prune. ASSERT_LE(sketch.Data().size(), kRows * kCols); } // This is not necessarily true for all inputs without calling unique after // prune. ASSERT_TRUE(thrust::is_sorted(thrust::device, sketch.Data().data(), sketch.Data().data() + sketch.Data().size(), detail::SketchUnique{})); TestQuantileElemRank(0, sketch.Data(), sketch.ColumnsPtr()); }); } TEST(GPUQuantile, MergeEmpty) { constexpr size_t kRows = 1000, kCols = 100; size_t n_bins = 10; SketchContainer sketch_0(n_bins, kCols, kRows, 0); HostDeviceVector storage_0; std::string interface_str_0 = RandomDataGenerator{kRows, kCols, 0}.Device(0).GenerateArrayInterface( &storage_0); data::CupyAdapter adapter_0(interface_str_0); MetaInfo info; AdapterDeviceSketch(adapter_0.Value(), n_bins, info, std::numeric_limits::quiet_NaN(), &sketch_0); std::vector entries_before(sketch_0.Data().size()); dh::CopyDeviceSpanToVector(&entries_before, sketch_0.Data()); std::vector ptrs_before(sketch_0.ColumnsPtr().size()); dh::CopyDeviceSpanToVector(&ptrs_before, sketch_0.ColumnsPtr()); thrust::device_vector columns_ptr(kCols + 1); // Merge an empty sketch sketch_0.Merge(dh::ToSpan(columns_ptr), Span{}); std::vector entries_after(sketch_0.Data().size()); dh::CopyDeviceSpanToVector(&entries_after, sketch_0.Data()); std::vector ptrs_after(sketch_0.ColumnsPtr().size()); dh::CopyDeviceSpanToVector(&ptrs_after, sketch_0.ColumnsPtr()); CHECK_EQ(entries_before.size(), entries_after.size()); CHECK_EQ(ptrs_before.size(), ptrs_after.size()); for (size_t i = 0; i < entries_before.size(); ++i) { CHECK_EQ(entries_before[i].value, entries_after[i].value); CHECK_EQ(entries_before[i].rmin, entries_after[i].rmin); CHECK_EQ(entries_before[i].rmax, entries_after[i].rmax); CHECK_EQ(entries_before[i].wmin, entries_after[i].wmin); } for (size_t i = 0; i < ptrs_before.size(); ++i) { CHECK_EQ(ptrs_before[i], ptrs_after[i]); } } TEST(GPUQuantile, MergeBasic) { constexpr size_t kRows = 1000, kCols = 100; RunWithSeedsAndBins(kRows, [=](int32_t seed, size_t n_bins, MetaInfo const& info) { SketchContainer sketch_0(n_bins, kCols, kRows, 0); HostDeviceVector storage_0; std::string interface_str_0 = RandomDataGenerator{kRows, kCols, 0} .Device(0) .Seed(seed) .GenerateArrayInterface(&storage_0); data::CupyAdapter adapter_0(interface_str_0); AdapterDeviceSketch(adapter_0.Value(), n_bins, info, std::numeric_limits::quiet_NaN(), &sketch_0); SketchContainer sketch_1(n_bins, kCols, kRows * kRows, 0); HostDeviceVector storage_1; std::string interface_str_1 = RandomDataGenerator{kRows, kCols, 0} .Device(0) .Seed(seed) .GenerateArrayInterface(&storage_1); data::CupyAdapter adapter_1(interface_str_1); AdapterDeviceSketch(adapter_1.Value(), n_bins, info, std::numeric_limits::quiet_NaN(), &sketch_1); size_t size_before_merge = sketch_0.Data().size(); sketch_0.Merge(sketch_1.ColumnsPtr(), sketch_1.Data()); if (info.weights_.Size() != 0) { TestQuantileElemRank(0, sketch_0.Data(), sketch_0.ColumnsPtr(), true); sketch_0.FixError(); TestQuantileElemRank(0, sketch_0.Data(), sketch_0.ColumnsPtr(), false); } else { TestQuantileElemRank(0, sketch_0.Data(), sketch_0.ColumnsPtr()); } auto columns_ptr = sketch_0.ColumnsPtr(); std::vector h_columns_ptr(columns_ptr.size()); dh::CopyDeviceSpanToVector(&h_columns_ptr, columns_ptr); ASSERT_EQ(h_columns_ptr.back(), sketch_1.Data().size() + size_before_merge); sketch_0.Unique(); ASSERT_TRUE( thrust::is_sorted(thrust::device, sketch_0.Data().data(), sketch_0.Data().data() + sketch_0.Data().size(), detail::SketchUnique{})); }); } void TestMergeDuplicated(int32_t n_bins, size_t cols, size_t rows, float frac) { MetaInfo info; int32_t seed = 0; SketchContainer sketch_0(n_bins, cols, rows, 0); HostDeviceVector storage_0; std::string interface_str_0 = RandomDataGenerator{rows, cols, 0} .Device(0) .Seed(seed) .GenerateArrayInterface(&storage_0); data::CupyAdapter adapter_0(interface_str_0); AdapterDeviceSketch(adapter_0.Value(), n_bins, info, std::numeric_limits::quiet_NaN(), &sketch_0); size_t f_rows = rows * frac; SketchContainer sketch_1(n_bins, cols, f_rows, 0); HostDeviceVector storage_1; std::string interface_str_1 = RandomDataGenerator{f_rows, cols, 0} .Device(0) .Seed(seed) .GenerateArrayInterface(&storage_1); auto data_1 = storage_1.DeviceSpan(); auto tuple_it = thrust::make_tuple( thrust::make_counting_iterator(0ul), data_1.data()); using Tuple = thrust::tuple; auto it = thrust::make_zip_iterator(tuple_it); thrust::transform(thrust::device, it, it + data_1.size(), data_1.data(), [=] __device__(Tuple const &tuple) { auto i = thrust::get<0>(tuple); if (thrust::get<0>(tuple) % 2 == 0) { return 0.0f; } else { return thrust::get<1>(tuple); } }); data::CupyAdapter adapter_1(interface_str_1); AdapterDeviceSketch(adapter_1.Value(), n_bins, info, std::numeric_limits::quiet_NaN(), &sketch_1); size_t size_before_merge = sketch_0.Data().size(); sketch_0.Merge(sketch_1.ColumnsPtr(), sketch_1.Data()); TestQuantileElemRank(0, sketch_0.Data(), sketch_0.ColumnsPtr()); auto columns_ptr = sketch_0.ColumnsPtr(); std::vector h_columns_ptr(columns_ptr.size()); dh::CopyDeviceSpanToVector(&h_columns_ptr, columns_ptr); ASSERT_EQ(h_columns_ptr.back(), sketch_1.Data().size() + size_before_merge); sketch_0.Unique(); ASSERT_TRUE(thrust::is_sorted(thrust::device, sketch_0.Data().data(), sketch_0.Data().data() + sketch_0.Data().size(), detail::SketchUnique{})); } TEST(GPUQuantile, MergeDuplicated) { size_t n_bins = 256; constexpr size_t kRows = 1000, kCols = 100; for (float frac = 0.5; frac < 2.5; frac += 0.5) { TestMergeDuplicated(n_bins, kRows, kCols, frac); } } TEST(GPUQuantile, AllReduceBasic) { // This test is supposed to run by a python test that setups the environment. std::string msg {"Skipping AllReduce test"}; #if defined(__linux__) && defined(XGBOOST_USE_NCCL) auto n_gpus = AllVisibleGPUs(); InitRabitContext(msg, n_gpus); auto world = rabit::GetWorldSize(); if (world != 1) { ASSERT_EQ(world, n_gpus); } else { return; } constexpr size_t kRows = 1000, kCols = 100; RunWithSeedsAndBins(kRows, [=](int32_t seed, size_t n_bins, MetaInfo const& info) { // Set up single node version; SketchContainer sketch_on_single_node(n_bins, kCols, kRows, 0); size_t intermediate_num_cuts = std::min(kRows * world, static_cast(n_bins * WQSketch::kFactor)); std::vector containers; for (auto rank = 0; rank < world; ++rank) { HostDeviceVector storage; std::string interface_str = RandomDataGenerator{kRows, kCols, 0} .Device(0) .Seed(rank + seed) .GenerateArrayInterface(&storage); data::CupyAdapter adapter(interface_str); containers.emplace_back(n_bins, kCols, kRows, 0); AdapterDeviceSketch(adapter.Value(), n_bins, info, std::numeric_limits::quiet_NaN(), &containers.back()); } for (auto& sketch : containers) { sketch.Prune(intermediate_num_cuts); sketch_on_single_node.Merge(sketch.ColumnsPtr(), sketch.Data()); sketch_on_single_node.FixError(); } sketch_on_single_node.Unique(); TestQuantileElemRank(0, sketch_on_single_node.Data(), sketch_on_single_node.ColumnsPtr()); // Set up distributed version. We rely on using rank as seed to generate // the exact same copy of data. auto rank = rabit::GetRank(); SketchContainer sketch_distributed(n_bins, kCols, kRows, 0); HostDeviceVector storage; std::string interface_str = RandomDataGenerator{kRows, kCols, 0} .Device(0) .Seed(rank + seed) .GenerateArrayInterface(&storage); data::CupyAdapter adapter(interface_str); AdapterDeviceSketch(adapter.Value(), n_bins, info, std::numeric_limits::quiet_NaN(), &sketch_distributed); sketch_distributed.AllReduce(); sketch_distributed.Unique(); ASSERT_EQ(sketch_distributed.ColumnsPtr().size(), sketch_on_single_node.ColumnsPtr().size()); ASSERT_EQ(sketch_distributed.Data().size(), sketch_on_single_node.Data().size()); TestQuantileElemRank(0, sketch_distributed.Data(), sketch_distributed.ColumnsPtr()); std::vector single_node_data( sketch_on_single_node.Data().size()); dh::CopyDeviceSpanToVector(&single_node_data, sketch_on_single_node.Data()); std::vector distributed_data(sketch_distributed.Data().size()); dh::CopyDeviceSpanToVector(&distributed_data, sketch_distributed.Data()); float Eps = 2e-4 * world; for (size_t i = 0; i < single_node_data.size(); ++i) { ASSERT_NEAR(single_node_data[i].value, distributed_data[i].value, Eps); ASSERT_NEAR(single_node_data[i].rmax, distributed_data[i].rmax, Eps); ASSERT_NEAR(single_node_data[i].rmin, distributed_data[i].rmin, Eps); ASSERT_NEAR(single_node_data[i].wmin, distributed_data[i].wmin, Eps); } }); rabit::Finalize(); #else LOG(WARNING) << msg; return; #endif // !defined(__linux__) && defined(XGBOOST_USE_NCCL) } TEST(GPUQuantile, SameOnAllWorkers) { std::string msg {"Skipping SameOnAllWorkers test"}; #if defined(__linux__) && defined(XGBOOST_USE_NCCL) auto n_gpus = AllVisibleGPUs(); InitRabitContext(msg, n_gpus); auto world = rabit::GetWorldSize(); if (world != 1) { ASSERT_EQ(world, n_gpus); } else { return; } constexpr size_t kRows = 1000, kCols = 100; RunWithSeedsAndBins(kRows, [=](int32_t seed, size_t n_bins, MetaInfo const &info) { auto rank = rabit::GetRank(); SketchContainer sketch_distributed(n_bins, kCols, kRows, 0); HostDeviceVector storage; std::string interface_str = RandomDataGenerator{kRows, kCols, 0} .Device(0) .Seed(rank + seed) .GenerateArrayInterface(&storage); data::CupyAdapter adapter(interface_str); AdapterDeviceSketch(adapter.Value(), n_bins, info, std::numeric_limits::quiet_NaN(), &sketch_distributed); sketch_distributed.AllReduce(); sketch_distributed.Unique(); TestQuantileElemRank(0, sketch_distributed.Data(), sketch_distributed.ColumnsPtr()); // Test for all workers having the same sketch. size_t n_data = sketch_distributed.Data().size(); rabit::Allreduce(&n_data, 1); ASSERT_EQ(n_data, sketch_distributed.Data().size()); size_t size_as_float = sketch_distributed.Data().size_bytes() / sizeof(float); auto local_data = Span{ reinterpret_cast(sketch_distributed.Data().data()), size_as_float}; dh::caching_device_vector all_workers(size_as_float * world); thrust::fill(all_workers.begin(), all_workers.end(), 0); thrust::copy(thrust::device, local_data.data(), local_data.data() + local_data.size(), all_workers.begin() + local_data.size() * rank); dh::AllReducer reducer; reducer.Init(0); reducer.AllReduceSum(all_workers.data().get(), all_workers.data().get(), all_workers.size()); reducer.Synchronize(); auto base_line = dh::ToSpan(all_workers).subspan(0, size_as_float); std::vector h_base_line(base_line.size()); dh::CopyDeviceSpanToVector(&h_base_line, base_line); size_t offset = 0; for (size_t i = 0; i < world; ++i) { auto comp = dh::ToSpan(all_workers).subspan(offset, size_as_float); std::vector h_comp(comp.size()); dh::CopyDeviceSpanToVector(&h_comp, comp); ASSERT_EQ(comp.size(), base_line.size()); for (size_t j = 0; j < h_comp.size(); ++j) { ASSERT_NEAR(h_base_line[j], h_comp[j], kRtEps); } offset += size_as_float; } }); #else LOG(WARNING) << msg; return; #endif // !defined(__linux__) && defined(XGBOOST_USE_NCCL) } } // namespace common } // namespace xgboost