require(xgboost) # load in the agaricus dataset data(agaricus.train, package='xgboost') data(agaricus.test, package='xgboost') dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label) dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label) param <- list(max_depth=2,eta=1,silent=1,objective='binary:logistic') watchlist <- list(eval = dtest, train = dtrain) nround = 2 # training the model for two rounds bst = xgb.train(param, dtrain, nround, watchlist) cat('start testing prediction from first n trees\n') labels <- getinfo(dtest,'label') ### predict using first 1 tree ypred1 = predict(bst, dtest, ntreelimit=1) # by default, we predict using all the trees ypred2 = predict(bst, dtest) cat('error of ypred1=', mean(as.numeric(ypred1>0.5)!=labels),'\n') cat('error of ypred2=', mean(as.numeric(ypred2>0.5)!=labels),'\n')