XGBoost Code Examples ===================== This folder contains all the code examples using xgboost. * Contribution of examples, benchmarks is more than welcome! * If you like to share how you use xgboost to solve your problem, send a pull request:) Features Walkthrough -------------------- This is a list of short codes introducing different functionalities of xgboost packages. * Basic walkthrough of packages [python](guide-python/basic_walkthrough.py) [R](../R-package/demo/basic_walkthrough.R) [Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/basic_walkthrough.jl) * Customize loss function, and evaluation metric [python](guide-python/custom_objective.py) [R](../R-package/demo/custom_objective.R) [Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/custom_objective.jl) * Boosting from existing prediction [python](guide-python/boost_from_prediction.py) [R](../R-package/demo/boost_from_prediction.R) [Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/boost_from_prediction.jl) * Predicting using first n trees [python](guide-python/predict_first_ntree.py) [R](../R-package/demo/predict_first_ntree.R) [Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/predict_first_ntree.jl) * Generalized Linear Model [python](guide-python/generalized_linear_model.py) [R](../R-package/demo/generalized_linear_model.R) [Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/generalized_linear_model.jl) * Cross validation [python](guide-python/cross_validation.py) [R](../R-package/demo/cross_validation.R) [Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/cross_validation.jl) * Predicting leaf indices [python](guide-python/predict_leaf_indices.py) [R](../R-package/demo/predict_leaf_indices.R) Basic Examples by Tasks ----------------------- Most of examples in this section are based on CLI or python version. However, the parameter settings can be applied to all versions * [Binary classification](binary_classification) * [Multiclass classification](multiclass_classification) * [Regression](regression) * [Learning to Rank](rank) * [Distributed Training](distributed-training) Benchmarks ---------- * [Starter script for Kaggle Higgs Boson](kaggle-higgs) * [Kaggle Tradeshift winning solution by daxiongshu](https://github.com/daxiongshu/kaggle-tradeshift-winning-solution) Machine Learning Challenge Winning Solutions -------------------------------------------- * XGBoost helps Vlad Mironov, Alexander Guschin to win the [CERN LHCb experiment Flavour of Physics competition](https://www.kaggle.com/c/flavours-of-physics). Check out the [interview from Kaggle](http://blog.kaggle.com/2015/11/30/flavour-of-physics-technical-write-up-1st-place-go-polar-bears/). * XGBoost helps Mario Filho, Josef Feigl, Lucas, Gilberto to win the [Caterpillar Tube Pricing competition](https://www.kaggle.com/c/caterpillar-tube-pricing). Check out the [interview from Kaggle](http://blog.kaggle.com/2015/09/22/caterpillar-winners-interview-1st-place-gilberto-josef-leustagos-mario/). * XGBoost helps Halla Yang to win the [Recruit Coupon Purchase Prediction Challenge](https://www.kaggle.com/c/coupon-purchase-prediction). Check out the [interview from Kaggle](http://blog.kaggle.com/2015/10/21/recruit-coupon-purchase-winners-interview-2nd-place-halla-yang/).