setClass("xgb.Booster") #' Predict method for eXtreme Gradient Boosting model #' #' Predicted values based on xgboost model object. #' #' @param object Object of class "xgb.Boost" #' @param newdata takes \code{matrix}, \code{dgCMatrix}, local data file or #' \code{xgb.DMatrix}. #' @param outputmargin whether the prediction should be shown in the original #' value of sum of functions, when outputmargin=TRUE, the prediction is #' untransformed margin value. In logistic regression, outputmargin=T will #' output value before logistic transformation. #' @param ntreelimit limit number of trees used in prediction, this parameter is #' only valid for gbtree, but not for gblinear. set it to be value bigger #' than 0. It will use all trees by default. #' @examples #' data(agaricus.train, package='xgboost') #' data(agaricus.test, package='xgboost') #' train <- agaricus.train #' test <- agaricus.test #' bst <- xgboost(data = train$data, label = train$label, max.depth = 2, #' eta = 1, nround = 2,objective = "binary:logistic") #' pred <- predict(bst, test$data) #' @export #' setMethod("predict", signature = "xgb.Booster", definition = function(object, newdata, missing = NULL, outputmargin = FALSE, ntreelimit = NULL) { if (class(newdata) != "xgb.DMatrix") { if (is.null(missing)) { newdata <- xgb.DMatrix(newdata) } else { newdata <- xgb.DMatrix(newdata, missing = missing) } } if (is.null(ntreelimit)) { ntreelimit <- 0 } else { if (ntreelimit < 1){ stop("predict: ntreelimit must be equal to or greater than 1") } } ret <- .Call("XGBoosterPredict_R", object, newdata, as.integer(outputmargin), as.integer(ntreelimit), PACKAGE = "xgboost") return(ret) })