/*! * Copyright 2017-2019 by Contributors * \file gbtree_model.h */ #ifndef XGBOOST_GBM_GBTREE_MODEL_H_ #define XGBOOST_GBM_GBTREE_MODEL_H_ #include #include #include #include #include #include #include #include #include #include namespace xgboost { class Json; namespace gbm { /*! \brief model parameters */ struct GBTreeModelParam : public dmlc::Parameter { public: /*! \brief number of trees */ int32_t num_trees; /*! \brief (Deprecated) number of roots */ int32_t deprecated_num_roots; /*! \brief number of features to be used by trees */ int32_t deprecated_num_feature; /*! \brief pad this space, for backward compatibility reason.*/ int32_t pad_32bit; /*! \brief deprecated padding space. */ int64_t deprecated_num_pbuffer; // deprecated. use learner_model_param_->num_output_group. int32_t deprecated_num_output_group; /*! \brief size of leaf vector needed in tree */ int32_t size_leaf_vector; /*! \brief reserved parameters */ int32_t reserved[32]; /*! \brief constructor */ GBTreeModelParam() { std::memset(this, 0, sizeof(GBTreeModelParam)); // FIXME(trivialfis): Why? static_assert(sizeof(GBTreeModelParam) == (4 + 2 + 2 + 32) * sizeof(int32_t), "64/32 bit compatibility issue"); deprecated_num_roots = 1; } // declare parameters, only declare those that need to be set. DMLC_DECLARE_PARAMETER(GBTreeModelParam) { DMLC_DECLARE_FIELD(num_trees) .set_lower_bound(0) .set_default(0) .describe("Number of features used for training and prediction."); DMLC_DECLARE_FIELD(size_leaf_vector) .set_lower_bound(0) .set_default(0) .describe("Reserved option for vector tree."); } }; struct GBTreeModel : public Model { public: explicit GBTreeModel(LearnerModelParam const* learner_model) : learner_model_param{learner_model} {} void Configure(const Args& cfg) { // initialize model parameters if not yet been initialized. if (trees.size() == 0) { param.UpdateAllowUnknown(cfg); } } void InitTreesToUpdate() { if (trees_to_update.size() == 0u) { for (auto & tree : trees) { trees_to_update.push_back(std::move(tree)); } trees.clear(); param.num_trees = 0; tree_info.clear(); } } void Load(dmlc::Stream* fi); void Save(dmlc::Stream* fo) const; void SaveModel(Json* p_out) const override; void LoadModel(Json const& p_out) override; std::vector DumpModel(const FeatureMap& fmap, bool with_stats, std::string format) const { std::vector dump; for (const auto & tree : trees) { dump.push_back(tree->DumpModel(fmap, with_stats, format)); } return dump; } void CommitModel(std::vector >&& new_trees, int bst_group) { for (auto & new_tree : new_trees) { trees.push_back(std::move(new_tree)); tree_info.push_back(bst_group); } param.num_trees += static_cast(new_trees.size()); } // base margin LearnerModelParam const* learner_model_param; // model parameter GBTreeModelParam param; /*! \brief vector of trees stored in the model */ std::vector > trees; /*! \brief for the update process, a place to keep the initial trees */ std::vector > trees_to_update; /*! \brief some information indicator of the tree, reserved */ std::vector tree_info; }; } // namespace gbm } // namespace xgboost #endif // XGBOOST_GBM_GBTREE_MODEL_H_