'''Dask interface demo: Use scikit-learn regressor interface with GPU histogram tree method.''' from dask.distributed import Client # It's recommended to use dask_cuda for GPU assignment from dask_cuda import LocalCUDACluster from dask import array as da import xgboost if __name__ == '__main__': cluster = LocalCUDACluster() client = Client(cluster) n = 100 m = 1000000 partition_size = 10000 X = da.random.random((m, n), partition_size) y = da.random.random(m, partition_size) regressor = xgboost.dask.DaskXGBRegressor(verbosity=2) regressor.set_params(tree_method='gpu_hist') regressor.client = client regressor.fit(X, y, eval_set=[(X, y)]) prediction = regressor.predict(X) bst = regressor.get_booster() history = regressor.evals_result() print('Evaluation history:', history)