#' Cross Validation #' #' The cross validation function of xgboost. #' #' @param params the list of parameters. The complete list of parameters is #' available in the \href{http://xgboost.readthedocs.io/en/latest/parameter.html}{online documentation}. Below #' is a shorter summary: #' \itemize{ #' \item \code{objective} objective function, common ones are #' \itemize{ #' \item \code{reg:squarederror} Regression with squared loss. #' \item \code{binary:logistic} logistic regression for classification. #' \item See \code{\link[=xgb.train]{xgb.train}()} for complete list of objectives. #' } #' \item \code{eta} step size of each boosting step #' \item \code{max_depth} maximum depth of the tree #' \item \code{nthread} number of thread used in training, if not set, all threads are used #' } #' #' See \code{\link{xgb.train}} for further details. #' See also demo/ for walkthrough example in R. #' #' Note that, while `params` accepts a `seed` entry and will use such parameter for model training if #' supplied, this seed is not used for creation of train-test splits, which instead rely on R's own RNG #' system - thus, for reproducible results, one needs to call the `set.seed` function beforehand. #' @param data An `xgb.DMatrix` object, with corresponding fields like `label` or bounds as required #' for model training by the objective. #' #' Note that only the basic `xgb.DMatrix` class is supported - variants such as `xgb.QuantileDMatrix` #' or `xgb.ExternalDMatrix` are not supported here. #' @param nrounds the max number of iterations #' @param nfold the original dataset is randomly partitioned into \code{nfold} equal size subsamples. #' @param prediction A logical value indicating whether to return the test fold predictions #' from each CV model. This parameter engages the \code{\link{xgb.cb.cv.predict}} callback. #' @param showsd \code{boolean}, whether to show standard deviation of cross validation #' @param metrics, list of evaluation metrics to be used in cross validation, #' when it is not specified, the evaluation metric is chosen according to objective function. #' Possible options are: #' \itemize{ #' \item \code{error} binary classification error rate #' \item \code{rmse} Rooted mean square error #' \item \code{logloss} negative log-likelihood function #' \item \code{mae} Mean absolute error #' \item \code{mape} Mean absolute percentage error #' \item \code{auc} Area under curve #' \item \code{aucpr} Area under PR curve #' \item \code{merror} Exact matching error, used to evaluate multi-class classification #' } #' @param obj customized objective function. Returns gradient and second order #' gradient with given prediction and dtrain. #' @param feval customized evaluation function. Returns #' \code{list(metric='metric-name', value='metric-value')} with given #' prediction and dtrain. #' @param stratified A \code{boolean} indicating whether sampling of folds should be stratified #' by the values of outcome labels. For real-valued labels in regression objectives, #' stratification will be done by discretizing the labels into up to 5 buckets beforehand. #' #' If passing "auto", will be set to `TRUE` if the objective in `params` is a classification #' objective (from XGBoost's built-in objectives, doesn't apply to custom ones), and to #' `FALSE` otherwise. #' #' This parameter is ignored when `data` has a `group` field - in such case, the splitting #' will be based on whole groups (note that this might make the folds have different sizes). #' #' Value `TRUE` here is \bold{not} supported for custom objectives. #' @param folds \code{list} provides a possibility to use a list of pre-defined CV folds #' (each element must be a vector of test fold's indices). When folds are supplied, #' the \code{nfold} and \code{stratified} parameters are ignored. #' #' If `data` has a `group` field and the objective requires this field, each fold (list element) #' must additionally have two attributes (retrievable through \link{attributes}) named `group_test` #' and `group_train`, which should hold the `group` to assign through \link{setinfo.xgb.DMatrix} to #' the resulting DMatrices. #' @param train_folds \code{list} list specifying which indicies to use for training. If \code{NULL} #' (the default) all indices not specified in \code{folds} will be used for training. #' #' This is not supported when `data` has `group` field. #' @param verbose \code{boolean}, print the statistics during the process #' @param print_every_n Print each n-th iteration evaluation messages when \code{verbose>0}. #' Default is 1 which means all messages are printed. This parameter is passed to the #' \code{\link{xgb.cb.print.evaluation}} callback. #' @param early_stopping_rounds If \code{NULL}, the early stopping function is not triggered. #' If set to an integer \code{k}, training with a validation set will stop if the performance #' doesn't improve for \code{k} rounds. #' Setting this parameter engages the \code{\link{xgb.cb.early.stop}} callback. #' @param maximize If \code{feval} and \code{early_stopping_rounds} are set, #' then this parameter must be set as well. #' When it is \code{TRUE}, it means the larger the evaluation score the better. #' This parameter is passed to the \code{\link{xgb.cb.early.stop}} callback. #' @param callbacks a list of callback functions to perform various task during boosting. #' See \code{\link{xgb.Callback}}. Some of the callbacks are automatically created depending on the #' parameters' values. User can provide either existing or their own callback methods in order #' to customize the training process. #' @param ... other parameters to pass to \code{params}. #' #' @details #' The original sample is randomly partitioned into \code{nfold} equal size subsamples. #' #' Of the \code{nfold} subsamples, a single subsample is retained as the validation data for testing the model, #' and the remaining \code{nfold - 1} subsamples are used as training data. #' #' The cross-validation process is then repeated \code{nrounds} times, with each of the #' \code{nfold} subsamples used exactly once as the validation data. #' #' All observations are used for both training and validation. #' #' Adapted from \url{https://en.wikipedia.org/wiki/Cross-validation_\%28statistics\%29} #' #' @return #' An object of class \code{xgb.cv.synchronous} with the following elements: #' \itemize{ #' \item \code{call} a function call. #' \item \code{params} parameters that were passed to the xgboost library. Note that it does not #' capture parameters changed by the \code{\link{xgb.cb.reset.parameters}} callback. #' \item \code{evaluation_log} evaluation history stored as a \code{data.table} with the #' first column corresponding to iteration number and the rest corresponding to the #' CV-based evaluation means and standard deviations for the training and test CV-sets. #' It is created by the \code{\link{xgb.cb.evaluation.log}} callback. #' \item \code{niter} number of boosting iterations. #' \item \code{nfeatures} number of features in training data. #' \item \code{folds} the list of CV folds' indices - either those passed through the \code{folds} #' parameter or randomly generated. #' \item \code{best_iteration} iteration number with the best evaluation metric value #' (only available with early stopping). #' } #' #' Plus other potential elements that are the result of callbacks, such as a list `cv_predict` with #' a sub-element `pred` when passing `prediction = TRUE`, which is added by the \link{xgb.cb.cv.predict} #' callback (note that one can also pass it manually under `callbacks` with different settings, #' such as saving also the models created during cross validation); or a list `early_stop` which #' will contain elements such as `best_iteration` when using the early stopping callback (\link{xgb.cb.early.stop}). #' #' @examples #' data(agaricus.train, package='xgboost') #' dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2)) #' cv <- xgb.cv(data = dtrain, nrounds = 3, nthread = 2, nfold = 5, metrics = list("rmse","auc"), #' max_depth = 3, eta = 1, objective = "binary:logistic") #' print(cv) #' print(cv, verbose=TRUE) #' #' @export xgb.cv <- function(params = list(), data, nrounds, nfold, prediction = FALSE, showsd = TRUE, metrics = list(), obj = NULL, feval = NULL, stratified = "auto", folds = NULL, train_folds = NULL, verbose = TRUE, print_every_n = 1L, early_stopping_rounds = NULL, maximize = NULL, callbacks = list(), ...) { check.deprecation(...) stopifnot(inherits(data, "xgb.DMatrix")) if (inherits(data, "xgb.DMatrix") && .Call(XGCheckNullPtr_R, data)) { stop("'data' is an invalid 'xgb.DMatrix' object. Must be constructed again.") } params <- check.booster.params(params, ...) # TODO: should we deprecate the redundant 'metrics' parameter? for (m in metrics) params <- c(params, list("eval_metric" = m)) check.custom.obj() check.custom.eval() if (stratified == "auto") { if (is.character(params$objective)) { stratified <- ( (params$objective %in% .CLASSIFICATION_OBJECTIVES()) && !(params$objective %in% .RANKING_OBJECTIVES()) ) } else { stratified <- FALSE } } # Check the labels and groups cv_label <- getinfo(data, "label") cv_group <- getinfo(data, "group") if (!is.null(train_folds) && NROW(cv_group)) { stop("'train_folds' is not supported for DMatrix object with 'group' field.") } # CV folds if (!is.null(folds)) { if (!is.list(folds) || length(folds) < 2) stop("'folds' must be a list with 2 or more elements that are vectors of indices for each CV-fold") nfold <- length(folds) } else { if (nfold <= 1) stop("'nfold' must be > 1") folds <- generate.cv.folds(nfold, nrow(data), stratified, cv_label, cv_group, params) } # Callbacks tmp <- .process.callbacks(callbacks, is_cv = TRUE) callbacks <- tmp$callbacks cb_names <- tmp$cb_names rm(tmp) # Early stopping callback if (!is.null(early_stopping_rounds) && !("early_stop" %in% cb_names)) { callbacks <- add.callback( callbacks, xgb.cb.early.stop( early_stopping_rounds, maximize = maximize, verbose = verbose ), as_first_elt = TRUE ) } # verbosity & evaluation printing callback: params <- c(params, list(silent = 1)) print_every_n <- max(as.integer(print_every_n), 1L) if (verbose && !("print_evaluation" %in% cb_names)) { callbacks <- add.callback(callbacks, xgb.cb.print.evaluation(print_every_n, showsd = showsd)) } # evaluation log callback: always is on in CV if (!("evaluation_log" %in% cb_names)) { callbacks <- add.callback(callbacks, xgb.cb.evaluation.log()) } # CV-predictions callback if (prediction && !("cv_predict" %in% cb_names)) { callbacks <- add.callback(callbacks, xgb.cb.cv.predict(save_models = FALSE)) } # create the booster-folds # train_folds dall <- data bst_folds <- lapply(seq_along(folds), function(k) { dtest <- xgb.slice.DMatrix(dall, folds[[k]], allow_groups = TRUE) # code originally contributed by @RolandASc on stackoverflow if (is.null(train_folds)) dtrain <- xgb.slice.DMatrix(dall, unlist(folds[-k]), allow_groups = TRUE) else dtrain <- xgb.slice.DMatrix(dall, train_folds[[k]], allow_groups = TRUE) if (!is.null(attributes(folds[[k]])$group_test)) { setinfo(dtest, "group", attributes(folds[[k]])$group_test) setinfo(dtrain, "group", attributes(folds[[k]])$group_train) } bst <- xgb.Booster( params = params, cachelist = list(dtrain, dtest), modelfile = NULL ) bst <- bst$bst list(dtrain = dtrain, bst = bst, evals = list(train = dtrain, test = dtest), index = folds[[k]]) }) # extract parameters that can affect the relationship b/w #trees and #iterations num_class <- max(as.numeric(NVL(params[['num_class']], 1)), 1) # nolint # those are fixed for CV (no training continuation) begin_iteration <- 1 end_iteration <- nrounds .execute.cb.before.training( callbacks, bst_folds, dall, NULL, begin_iteration, end_iteration ) # synchronous CV boosting: run CV folds' models within each iteration for (iteration in begin_iteration:end_iteration) { .execute.cb.before.iter( callbacks, bst_folds, dall, NULL, iteration ) msg <- lapply(bst_folds, function(fd) { xgb.iter.update( bst = fd$bst, dtrain = fd$dtrain, iter = iteration - 1, obj = obj ) xgb.iter.eval( bst = fd$bst, evals = fd$evals, iter = iteration - 1, feval = feval ) }) msg <- simplify2array(msg) should_stop <- .execute.cb.after.iter( callbacks, bst_folds, dall, NULL, iteration, msg ) if (should_stop) break } cb_outputs <- .execute.cb.after.training( callbacks, bst_folds, dall, NULL, iteration, msg ) # the CV result ret <- list( call = match.call(), params = params, niter = iteration, nfeatures = ncol(dall), folds = folds ) ret <- c(ret, cb_outputs) class(ret) <- 'xgb.cv.synchronous' return(invisible(ret)) } #' Print xgb.cv result #' #' Prints formatted results of \code{xgb.cv}. #' #' @param x an \code{xgb.cv.synchronous} object #' @param verbose whether to print detailed data #' @param ... passed to \code{data.table.print} #' #' @details #' When not verbose, it would only print the evaluation results, #' including the best iteration (when available). #' #' @examples #' data(agaricus.train, package='xgboost') #' train <- agaricus.train #' cv <- xgb.cv(data = xgb.DMatrix(train$data, label = train$label), nfold = 5, max_depth = 2, #' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic") #' print(cv) #' print(cv, verbose=TRUE) #' #' @rdname print.xgb.cv #' @method print xgb.cv.synchronous #' @export print.xgb.cv.synchronous <- function(x, verbose = FALSE, ...) { cat('##### xgb.cv ', length(x$folds), '-folds\n', sep = '') if (verbose) { if (!is.null(x$call)) { cat('call:\n ') print(x$call) } if (!is.null(x$params)) { cat('params (as set within xgb.cv):\n') cat(' ', paste(names(x$params), paste0('"', unlist(x$params), '"'), sep = ' = ', collapse = ', '), '\n', sep = '') } for (n in c('niter', 'best_iteration')) { if (is.null(x$early_stop[[n]])) next cat(n, ': ', x$early_stop[[n]], '\n', sep = '') } if (!is.null(x$cv_predict$pred)) { cat('pred:\n') str(x$cv_predict$pred) } } if (verbose) cat('evaluation_log:\n') print(x$evaluation_log, row.names = FALSE, ...) if (!is.null(x$early_stop$best_iteration)) { cat('Best iteration:\n') print(x$evaluation_log[x$early_stop$best_iteration], row.names = FALSE, ...) } invisible(x) }