/*! * Copyright 2014-2020 by Contributors * \file updater_prune.cc * \brief prune a tree given the statistics * \author Tianqi Chen */ #include #include #include #include #include "xgboost/base.h" #include "xgboost/json.h" #include "./param.h" #include "../common/io.h" #include "../common/timer.h" namespace xgboost { namespace tree { DMLC_REGISTRY_FILE_TAG(updater_prune); /*! \brief pruner that prunes a tree after growing finishes */ class TreePruner: public TreeUpdater { public: TreePruner() { syncher_.reset(TreeUpdater::Create("sync", tparam_)); pruner_monitor_.Init("TreePruner"); } char const* Name() const override { return "prune"; } // set training parameter void Configure(const Args& args) override { param_.UpdateAllowUnknown(args); syncher_->Configure(args); } void LoadConfig(Json const& in) override { auto const& config = get(in); FromJson(config.at("train_param"), &this->param_); } void SaveConfig(Json* p_out) const override { auto& out = *p_out; out["train_param"] = ToJson(param_); } bool CanModifyTree() const override { return true; } // update the tree, do pruning void Update(HostDeviceVector *gpair, DMatrix *p_fmat, const std::vector &trees) override { pruner_monitor_.Start("PrunerUpdate"); // rescale learning rate according to size of trees float lr = param_.learning_rate; param_.learning_rate = lr / trees.size(); for (auto tree : trees) { this->DoPrune(tree); } param_.learning_rate = lr; syncher_->Update(gpair, p_fmat, trees); pruner_monitor_.Stop("PrunerUpdate"); } private: // try to prune off current leaf bst_node_t TryPruneLeaf(RegTree &tree, int nid, int depth, int npruned) { // NOLINT(*) CHECK(tree[nid].IsLeaf()); if (tree[nid].IsRoot()) { return npruned; } bst_node_t pid = tree[nid].Parent(); CHECK(!tree[pid].IsLeaf()); RTreeNodeStat const &s = tree.Stat(pid); // Only prune when both child are leaf. auto left = tree[pid].LeftChild(); auto right = tree[pid].RightChild(); bool balanced = tree[left].IsLeaf() && right != RegTree::kInvalidNodeId && tree[right].IsLeaf(); if (balanced && param_.NeedPrune(s.loss_chg, depth)) { // need to be pruned tree.ChangeToLeaf(pid, param_.learning_rate * s.base_weight); // tail recursion return this->TryPruneLeaf(tree, pid, depth - 1, npruned + 2); } else { return npruned; } } /*! \brief do pruning of a tree */ void DoPrune(RegTree* p_tree) { auto& tree = *p_tree; bst_node_t npruned = 0; for (int nid = 0; nid < tree.param.num_nodes; ++nid) { if (tree[nid].IsLeaf() && !tree[nid].IsDeleted()) { npruned = this->TryPruneLeaf(tree, nid, tree.GetDepth(nid), npruned); } } LOG(INFO) << "tree pruning end, " << tree.NumExtraNodes() << " extra nodes, " << npruned << " pruned nodes, max_depth=" << tree.MaxDepth(); } private: // synchronizer std::unique_ptr syncher_; // training parameter TrainParam param_; common::Monitor pruner_monitor_; }; XGBOOST_REGISTER_TREE_UPDATER(TreePruner, "prune") .describe("Pruner that prune the tree according to statistics.") .set_body([]() { return new TreePruner(); }); } // namespace tree } // namespace xgboost