#' Plot feature importance bar graph #' #' Read a data.table containing feature importance details and plot it (for both GLM and Trees). #' #' @importFrom magrittr %>% #' @param importance_matrix a \code{data.table} returned by the \code{xgb.importance} function. #' @param numberOfClusters a \code{numeric} vector containing the min and the max range of the possible number of clusters of bars. #' #' @return A \code{ggplot2} bar graph representing each feature by a horizontal bar. Longer is the bar, more important is the feature. Features are classified by importance and clustered by importance. The group is represented through the color of the bar. #' #' @details #' The purpose of this function is to easily represent the importance of each feature of a model. #' The function returns a ggplot graph, therefore each of its characteristic can be overriden (to customize it). #' In particular you may want to override the title of the graph. To do so, add \code{+ ggtitle("A GRAPH NAME")} next to the value returned by this function. #' #' @examples #' data(agaricus.train, package='xgboost') #' #' #Both dataset are list with two items, a sparse matrix and labels #' #(labels = outcome column which will be learned). #' #Each column of the sparse Matrix is a feature in one hot encoding format. #' #' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max.depth = 2, #' eta = 1, nthread = 2, nround = 2,objective = "binary:logistic") #' #' #agaricus.train$data@@Dimnames[[2]] represents the column names of the sparse matrix. #' importance_matrix <- xgb.importance(agaricus.train$data@@Dimnames[[2]], model = bst) #' xgb.plot.importance(importance_matrix) #' #' @export xgb.plot.importance <- function(importance_matrix = NULL, numberOfClusters = c(1:10)) { if (!"data.table" %in% class(importance_matrix)) { stop("importance_matrix: Should be a data.table.") } if (!requireNamespace("ggplot2", quietly = TRUE)) { stop("ggplot2 package is required for plotting the importance", call. = FALSE) } if (!requireNamespace("Ckmeans.1d.dp", quietly = TRUE)) { stop("Ckmeans.1d.dp package is required for plotting the importance", call. = FALSE) } if(isTRUE(all.equal(colnames(importance_matrix), c("Feature", "Gain", "Cover", "Frequency")))){ y.axe.name <- "Gain" } else if(isTRUE(all.equal(colnames(importance_matrix), c("Feature", "Weight")))){ y.axe.name <- "Weight" } else { stop("Importance matrix is not correct (column names issue)") } # To avoid issues in clustering when co-occurences are used importance_matrix <- importance_matrix[, .(Gain.or.Weight = sum(get(y.axe.name))), by = Feature] clusters <- suppressWarnings(Ckmeans.1d.dp::Ckmeans.1d.dp(importance_matrix[,Gain.or.Weight], numberOfClusters)) importance_matrix[,"Cluster":= clusters$cluster %>% as.character] plot <- ggplot2::ggplot( importance_matrix, ggplot2::aes( x = stats::reorder(Feature, Gain.or.Weight), y = Gain.or.Weight, width = 0.05 ), environment = environment() ) + ggplot2::geom_bar(ggplot2::aes(fill = Cluster), stat = "identity", position = "identity") + ggplot2::coord_flip() + ggplot2::xlab("Features") + ggplot2::ylab(y.axe.name) + ggplot2::ggtitle("Feature importance") + ggplot2::theme( plot.title = ggplot2::element_text(lineheight = .9, face = "bold"), panel.grid.major.y = ggplot2::element_blank() ) return(plot) } # Avoid error messages during CRAN check. # The reason is that these variables are never declared # They are mainly column names inferred by Data.table... globalVariables( c( "Feature", "Gain.or.Weight", "Cluster", "ggplot", "aes", "geom_bar", "coord_flip", "xlab", "ylab", "ggtitle", "theme", "element_blank", "element_text", "Gain.or.Weight" ) )