import xgboost as xgb import numpy as np from sklearn.cross_validation import KFold, train_test_split from sklearn.metrics import mean_squared_error from sklearn.grid_search import GridSearchCV from sklearn.datasets import load_iris, load_digits, load_boston import unittest rng = np.random.RandomState(1337) class TestTrainingContinuation(unittest.TestCase): num_parallel_tree = 3 xgb_params_01 = { 'silent': 1, 'nthread': 1, } xgb_params_02 = { 'silent': 1, 'nthread': 1, 'num_parallel_tree': num_parallel_tree } def test_training_continuation(self): digits = load_digits(2) X = digits['data'] y = digits['target'] dtrain = xgb.DMatrix(X, label=y) gbdt_01 = xgb.train(self.xgb_params_01, dtrain, num_boost_round=10) ntrees_01 = len(gbdt_01.get_dump()) assert ntrees_01 == 10 gbdt_02 = xgb.train(self.xgb_params_01, dtrain, num_boost_round=0) gbdt_02.save_model('xgb_tc.model') gbdt_02a = xgb.train(self.xgb_params_01, dtrain, num_boost_round=10, xgb_model=gbdt_02) gbdt_02b = xgb.train(self.xgb_params_01, dtrain, num_boost_round=10, xgb_model="xgb_tc.model") ntrees_02a = len(gbdt_02a.get_dump()) ntrees_02b = len(gbdt_02b.get_dump()) assert ntrees_02a == 10 assert ntrees_02b == 10 assert mean_squared_error(y, gbdt_01.predict(dtrain)) == mean_squared_error(y, gbdt_02a.predict(dtrain)) assert mean_squared_error(y, gbdt_01.predict(dtrain)) == mean_squared_error(y, gbdt_02b.predict(dtrain)) gbdt_03 = xgb.train(self.xgb_params_01, dtrain, num_boost_round=3) gbdt_03.save_model('xgb_tc.model') gbdt_03a = xgb.train(self.xgb_params_01, dtrain, num_boost_round=7, xgb_model=gbdt_03) gbdt_03b = xgb.train(self.xgb_params_01, dtrain, num_boost_round=7, xgb_model="xgb_tc.model") ntrees_03a = len(gbdt_03a.get_dump()) ntrees_03b = len(gbdt_03b.get_dump()) assert ntrees_03a == 10 assert ntrees_03b == 10 assert mean_squared_error(y, gbdt_03a.predict(dtrain)) == mean_squared_error(y, gbdt_03b.predict(dtrain)) gbdt_04 = xgb.train(self.xgb_params_02, dtrain, num_boost_round=3) assert gbdt_04.best_ntree_limit == (gbdt_04.best_iteration + 1) * self.num_parallel_tree assert mean_squared_error(y, gbdt_04.predict(dtrain)) == \ mean_squared_error(y, gbdt_04.predict(dtrain, ntree_limit=gbdt_04.best_ntree_limit)) gbdt_04 = xgb.train(self.xgb_params_02, dtrain, num_boost_round=7, xgb_model=gbdt_04) assert gbdt_04.best_ntree_limit == (gbdt_04.best_iteration + 1) * self.num_parallel_tree assert mean_squared_error(y, gbdt_04.predict(dtrain)) == \ mean_squared_error(y, gbdt_04.predict(dtrain, ntree_limit=gbdt_04.best_ntree_limit))