/*! * Copyright 2017-2019 XGBoost contributors */ #pragma once #include #include #include #include #include #include #include "../common/device_helpers.cuh" #include "../common/random.h" #include "param.h" namespace xgboost { namespace tree { struct GPUTrainingParam { // minimum amount of hessian(weight) allowed in a child float min_child_weight; // L2 regularization factor float reg_lambda; // L1 regularization factor float reg_alpha; // maximum delta update we can add in weight estimation // this parameter can be used to stabilize update // default=0 means no constraint on weight delta float max_delta_step; GPUTrainingParam() = default; XGBOOST_DEVICE explicit GPUTrainingParam(const TrainParam& param) : min_child_weight(param.min_child_weight), reg_lambda(param.reg_lambda), reg_alpha(param.reg_alpha), max_delta_step(param.max_delta_step) {} }; using NodeIdT = int32_t; /** used to assign default id to a Node */ static const bst_node_t kUnusedNode = -1; /** * @enum DefaultDirection node.cuh * @brief Default direction to be followed in case of missing values */ enum DefaultDirection { /** move to left child */ kLeftDir = 0, /** move to right child */ kRightDir }; struct DeviceSplitCandidate { float loss_chg {-FLT_MAX}; DefaultDirection dir {kLeftDir}; int findex {-1}; float fvalue {0}; GradientPair left_sum; GradientPair right_sum; XGBOOST_DEVICE DeviceSplitCandidate() {} // NOLINT template XGBOOST_DEVICE void Update(const DeviceSplitCandidate& other, const ParamT& param) { if (other.loss_chg > loss_chg && other.left_sum.GetHess() >= param.min_child_weight && other.right_sum.GetHess() >= param.min_child_weight) { *this = other; } } XGBOOST_DEVICE void Update(float loss_chg_in, DefaultDirection dir_in, float fvalue_in, int findex_in, GradientPair left_sum_in, GradientPair right_sum_in, const GPUTrainingParam& param) { if (loss_chg_in > loss_chg && left_sum_in.GetHess() >= param.min_child_weight && right_sum_in.GetHess() >= param.min_child_weight) { loss_chg = loss_chg_in; dir = dir_in; fvalue = fvalue_in; left_sum = left_sum_in; right_sum = right_sum_in; findex = findex_in; } } XGBOOST_DEVICE bool IsValid() const { return loss_chg > 0.0f; } friend std::ostream& operator<<(std::ostream& os, DeviceSplitCandidate const& c) { os << "loss_chg:" << c.loss_chg << ", " << "dir: " << c.dir << ", " << "findex: " << c.findex << ", " << "fvalue: " << c.fvalue << ", " << "left sum: " << c.left_sum << ", " << "right sum: " << c.right_sum << std::endl; return os; } }; struct DeviceSplitCandidateReduceOp { GPUTrainingParam param; explicit DeviceSplitCandidateReduceOp(GPUTrainingParam param) : param(std::move(param)) {} XGBOOST_DEVICE DeviceSplitCandidate operator()( const DeviceSplitCandidate& a, const DeviceSplitCandidate& b) const { DeviceSplitCandidate best; best.Update(a, param); best.Update(b, param); return best; } }; struct DeviceNodeStats { GradientPair sum_gradients; float root_gain {-FLT_MAX}; float weight {-FLT_MAX}; /** default direction for missing values */ DefaultDirection dir {kLeftDir}; /** threshold value for comparison */ float fvalue {0.0f}; GradientPair left_sum; GradientPair right_sum; /** \brief The feature index. */ int fidx{kUnusedNode}; /** node id (used as key for reduce/scan) */ NodeIdT idx{kUnusedNode}; XGBOOST_DEVICE DeviceNodeStats() {} // NOLINT template HOST_DEV_INLINE DeviceNodeStats(GradientPair sum_gradients, NodeIdT nidx, const ParamT& param) : sum_gradients(sum_gradients), idx(nidx) { this->root_gain = CalcGain(param, sum_gradients.GetGrad(), sum_gradients.GetHess()); this->weight = CalcWeight(param, sum_gradients.GetGrad(), sum_gradients.GetHess()); } HOST_DEV_INLINE void SetSplit(float fvalue, int fidx, DefaultDirection dir, GradientPair left_sum, GradientPair right_sum) { this->fvalue = fvalue; this->fidx = fidx; this->dir = dir; this->left_sum = left_sum; this->right_sum = right_sum; } HOST_DEV_INLINE void SetSplit(const DeviceSplitCandidate& split) { this->SetSplit(split.fvalue, split.findex, split.dir, split.left_sum, split.right_sum); } /** Tells whether this node is part of the decision tree */ HOST_DEV_INLINE bool IsUnused() const { return (idx == kUnusedNode); } /** Tells whether this node is a leaf of the decision tree */ HOST_DEV_INLINE bool IsLeaf() const { return (!IsUnused() && (fidx == kUnusedNode)); } }; template struct SumCallbackOp { // Running prefix T running_total; // Constructor XGBOOST_DEVICE SumCallbackOp() : running_total(T()) {} XGBOOST_DEVICE T operator()(T block_aggregate) { T old_prefix = running_total; running_total += block_aggregate; return old_prefix; } }; } // namespace tree } // namespace xgboost