context('Test models with custom objective') set.seed(1994) data(agaricus.train, package = 'xgboost') data(agaricus.test, package = 'xgboost') dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label) dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label) watchlist <- list(eval = dtest, train = dtrain) logregobj <- function(preds, dtrain) { labels <- getinfo(dtrain, "label") preds <- 1 / (1 + exp(-preds)) grad <- preds - labels hess <- preds * (1 - preds) return(list(grad = grad, hess = hess)) } evalerror <- function(preds, dtrain) { labels <- getinfo(dtrain, "label") err <- as.numeric(sum(labels != (preds > 0.5))) / length(labels) return(list(metric = "error", value = err)) } param <- list(max_depth = 2, eta = 1, nthread = 2, objective = logregobj, eval_metric = evalerror) num_round <- 2 test_that("custom objective works", { bst <- xgb.train(param, dtrain, num_round, watchlist) expect_equal(class(bst), "xgb.Booster") expect_false(is.null(bst$evaluation_log)) expect_false(is.null(bst$evaluation_log$eval_error)) expect_lt(bst$evaluation_log[num_round, eval_error], 0.03) }) test_that("custom objective in CV works", { cv <- xgb.cv(param, dtrain, num_round, nfold = 10, verbose = FALSE) expect_false(is.null(cv$evaluation_log)) expect_equal(dim(cv$evaluation_log), c(2, 5)) expect_lt(cv$evaluation_log[num_round, test_error_mean], 0.03) }) test_that("custom objective with early stop works", { bst <- xgb.train(param, dtrain, 10, watchlist) expect_equal(class(bst), "xgb.Booster") train_log <- bst$evaluation_log$train_error expect_true(all(diff(train_log) <= 0)) }) test_that("custom objective using DMatrix attr works", { attr(dtrain, 'label') <- getinfo(dtrain, 'label') logregobjattr <- function(preds, dtrain) { labels <- attr(dtrain, 'label') preds <- 1 / (1 + exp(-preds)) grad <- preds - labels hess <- preds * (1 - preds) return(list(grad = grad, hess = hess)) } param$objective <- logregobjattr bst <- xgb.train(param, dtrain, num_round, watchlist) expect_equal(class(bst), "xgb.Booster") }) test_that("custom objective with multi-class shape", { data <- as.matrix(iris[, -5]) label <- as.numeric(iris$Species) - 1 dtrain <- xgb.DMatrix(data = data, label = label) n_classes <- 3 fake_softprob <- function(preds, dtrain) { expect_true(all(matrix(preds) == 0.5)) ## use numeric vector here to test compatibility with XGBoost < 2.1 grad <- rnorm(length(as.matrix(preds))) expect_equal(dim(data)[1] * n_classes, dim(as.matrix(preds))[1] * n_classes) hess <- rnorm(length(as.matrix(preds))) return(list(grad = grad, hess = hess)) } fake_merror <- function(preds, dtrain) { expect_equal(dim(data)[1] * n_classes, dim(as.matrix(preds))[1]) } param$objective <- fake_softprob param$eval_metric <- fake_merror bst <- xgb.train(param, dtrain, 1, num_class = n_classes) }) softmax <- function(values) { values <- as.numeric(values) exps <- exp(values) den <- sum(exps) return(exps / den) } softprob <- function(predt, dtrain) { y <- getinfo(dtrain, "label") n_samples <- dim(predt)[1] n_classes <- dim(predt)[2] grad <- matrix(nrow = n_samples, ncol = n_classes) hess <- matrix(nrow = n_samples, ncol = n_classes) for (i in seq_len(n_samples)) { t <- y[i] p <- softmax(predt[i, ]) for (c in seq_len(n_classes)) { g <- if (c - 1 == t) { p[c] - 1.0 } else { p[c] } h <- max((2.0 * p[c] * (1.0 - p[c])), 1e-6) grad[i, c] <- g hess[i, c] <- h } } return(list(grad = grad, hess = hess)) } test_that("custom objective with multi-class works", { data <- as.matrix(iris[, -5]) label <- as.numeric(iris$Species) - 1 dtrain <- xgb.DMatrix(data = data, label = label) param$num_class <- 3 param$objective <- softprob param$eval_metric <- "merror" param$base_score <- 0.5 custom_bst <- xgb.train(param, dtrain, 2) custom_predt <- predict(custom_bst, dtrain) param$objective <- "multi:softmax" builtin_bst <- xgb.train(param, dtrain, 2) builtin_predt <- predict(builtin_bst, dtrain) expect_equal(custom_predt, builtin_predt) })