import os import tempfile import unittest import platform import xgboost import subprocess import numpy import json class TestCLI(unittest.TestCase): template = ''' booster = gbtree objective = reg:squarederror eta = 1.0 gamma = 1.0 seed = {seed} min_child_weight = 0 max_depth = 3 task = {task} model_in = {model_in} model_out = {model_out} test_path = {test_path} name_pred = {name_pred} num_round = 10 data = {data_path} eval[test] = {data_path} ''' curdir = os.path.normpath(os.path.abspath(os.path.dirname(__file__))) project_root = os.path.normpath( os.path.join(curdir, os.path.pardir, os.path.pardir)) def get_exe(self): if platform.system() == 'Windows': exe = 'xgboost.exe' else: exe = 'xgboost' exe = os.path.join(self.project_root, exe) assert os.path.exists(exe) return exe def test_cli_model(self): data_path = "{root}/demo/data/agaricus.txt.train?format=libsvm".format( root=self.project_root) exe = self.get_exe() seed = 1994 with tempfile.TemporaryDirectory() as tmpdir: model_out_cli = os.path.join(tmpdir, 'test_load_cli_model-cli.bin') model_out_py = os.path.join(tmpdir, 'test_cli_model-py.bin') config_path = os.path.join(tmpdir, 'test_load_cli_model.conf') train_conf = self.template.format(data_path=data_path, seed=seed, task='train', model_in='NULL', model_out=model_out_cli, test_path='NULL', name_pred='NULL') with open(config_path, 'w') as fd: fd.write(train_conf) subprocess.run([exe, config_path]) predict_out = os.path.join(tmpdir, 'test_load_cli_model-prediction') predict_conf = self.template.format(task='pred', seed=seed, data_path=data_path, model_in=model_out_cli, model_out='NULL', test_path=data_path, name_pred=predict_out) with open(config_path, 'w') as fd: fd.write(predict_conf) subprocess.run([exe, config_path]) cli_predt = numpy.loadtxt(predict_out) parameters = { 'booster': 'gbtree', 'objective': 'reg:squarederror', 'eta': 1.0, 'gamma': 1.0, 'seed': seed, 'min_child_weight': 0, 'max_depth': 3 } data = xgboost.DMatrix(data_path) booster = xgboost.train(parameters, data, num_boost_round=10) booster.save_model(model_out_py) py_predt = booster.predict(data) numpy.testing.assert_allclose(cli_predt, py_predt) cli_model = xgboost.Booster(model_file=model_out_cli) cli_predt = cli_model.predict(data) numpy.testing.assert_allclose(cli_predt, py_predt) with open(model_out_cli, 'rb') as fd: cli_model_bin = fd.read() with open(model_out_py, 'rb') as fd: py_model_bin = fd.read() assert hash(cli_model_bin) == hash(py_model_bin) def test_cli_help(self): exe = self.get_exe() completed = subprocess.run([exe], stdout=subprocess.PIPE) error_msg = completed.stdout.decode('utf-8') ret = completed.returncode assert ret == 1 assert error_msg.find('Usage') != -1 assert error_msg.find('eval[NAME]') != -1 completed = subprocess.run([exe, '-V'], stdout=subprocess.PIPE) msg = completed.stdout.decode('utf-8') assert msg.find('XGBoost') != -1 v = xgboost.__version__ if v.find('SNAPSHOT') != -1: assert msg.split(':')[1].strip() == v.split('-')[0] else: assert msg.split(':')[1].strip() == v def test_cli_model_json(self): exe = self.get_exe() data_path = "{root}/demo/data/agaricus.txt.train?format=libsvm".format( root=self.project_root) seed = 1994 with tempfile.TemporaryDirectory() as tmpdir: model_out_cli = os.path.join( tmpdir, 'test_load_cli_model-cli.json') config_path = os.path.join(tmpdir, 'test_load_cli_model.conf') train_conf = self.template.format(data_path=data_path, seed=seed, task='train', model_in='NULL', model_out=model_out_cli, test_path='NULL', name_pred='NULL') with open(config_path, 'w') as fd: fd.write(train_conf) subprocess.run([exe, config_path]) with open(model_out_cli, 'r') as fd: model = json.load(fd) assert model['learner']['gradient_booster']['name'] == 'gbtree'