/*! * Copyright 2017-2021 by Contributors * \brief Data type for fast histogram aggregation. */ #include #include #include "gradient_index.h" #include "../common/hist_util.h" namespace xgboost { void GHistIndexMatrix::Init(DMatrix* p_fmat, int max_bins) { cut = common::SketchOnDMatrix(p_fmat, max_bins); max_num_bins = max_bins; const int32_t nthread = omp_get_max_threads(); const uint32_t nbins = cut.Ptrs().back(); hit_count.resize(nbins, 0); hit_count_tloc_.resize(nthread * nbins, 0); this->p_fmat = p_fmat; size_t new_size = 1; for (const auto &batch : p_fmat->GetBatches()) { new_size += batch.Size(); } row_ptr.resize(new_size); row_ptr[0] = 0; size_t rbegin = 0; size_t prev_sum = 0; const bool isDense = p_fmat->IsDense(); this->isDense_ = isDense; for (const auto &batch : p_fmat->GetBatches()) { // The number of threads is pegged to the batch size. If the OMP // block is parallelized on anything other than the batch/block size, // it should be reassigned const size_t batch_threads = std::max( size_t(1), std::min(batch.Size(), static_cast(omp_get_max_threads()))); auto page = batch.GetView(); common::MemStackAllocator partial_sums(batch_threads); size_t* p_part = partial_sums.Get(); size_t block_size = batch.Size() / batch_threads; dmlc::OMPException exc; #pragma omp parallel num_threads(batch_threads) { #pragma omp for for (omp_ulong tid = 0; tid < batch_threads; ++tid) { exc.Run([&]() { size_t ibegin = block_size * tid; size_t iend = (tid == (batch_threads-1) ? batch.Size() : (block_size * (tid+1))); size_t sum = 0; for (size_t i = ibegin; i < iend; ++i) { sum += page[i].size(); row_ptr[rbegin + 1 + i] = sum; } }); } #pragma omp single { exc.Run([&]() { p_part[0] = prev_sum; for (size_t i = 1; i < batch_threads; ++i) { p_part[i] = p_part[i - 1] + row_ptr[rbegin + i*block_size]; } }); } #pragma omp for for (omp_ulong tid = 0; tid < batch_threads; ++tid) { exc.Run([&]() { size_t ibegin = block_size * tid; size_t iend = (tid == (batch_threads-1) ? batch.Size() : (block_size * (tid+1))); for (size_t i = ibegin; i < iend; ++i) { row_ptr[rbegin + 1 + i] += p_part[tid]; } }); } } exc.Rethrow(); const size_t n_offsets = cut.Ptrs().size() - 1; const size_t n_index = row_ptr[rbegin + batch.Size()]; ResizeIndex(n_index, isDense); CHECK_GT(cut.Values().size(), 0U); uint32_t* offsets = nullptr; if (isDense) { index.ResizeOffset(n_offsets); offsets = index.Offset(); for (size_t i = 0; i < n_offsets; ++i) { offsets[i] = cut.Ptrs()[i]; } } if (isDense) { common::BinTypeSize curent_bin_size = index.GetBinTypeSize(); if (curent_bin_size == common::kUint8BinsTypeSize) { common::Span index_data_span = {index.data(), n_index}; SetIndexData(index_data_span, batch_threads, batch, rbegin, nbins, [offsets](auto idx, auto j) { return static_cast(idx - offsets[j]); }); } else if (curent_bin_size == common::kUint16BinsTypeSize) { common::Span index_data_span = {index.data(), n_index}; SetIndexData(index_data_span, batch_threads, batch, rbegin, nbins, [offsets](auto idx, auto j) { return static_cast(idx - offsets[j]); }); } else { CHECK_EQ(curent_bin_size, common::kUint32BinsTypeSize); common::Span index_data_span = {index.data(), n_index}; SetIndexData(index_data_span, batch_threads, batch, rbegin, nbins, [offsets](auto idx, auto j) { return static_cast(idx - offsets[j]); }); } /* For sparse DMatrix we have to store index of feature for each bin in index field to chose right offset. So offset is nullptr and index is not reduced */ } else { common::Span index_data_span = {index.data(), n_index}; SetIndexData(index_data_span, batch_threads, batch, rbegin, nbins, [](auto idx, auto) { return idx; }); } common::ParallelFor(bst_omp_uint(nbins), nthread, [&](bst_omp_uint idx) { for (int32_t tid = 0; tid < nthread; ++tid) { hit_count[idx] += hit_count_tloc_[tid * nbins + idx]; hit_count_tloc_[tid * nbins + idx] = 0; // reset for next batch } }); prev_sum = row_ptr[rbegin + batch.Size()]; rbegin += batch.Size(); } } void GHistIndexMatrix::ResizeIndex(const size_t n_index, const bool isDense) { if ((max_num_bins - 1 <= static_cast(std::numeric_limits::max())) && isDense) { index.SetBinTypeSize(common::kUint8BinsTypeSize); index.Resize((sizeof(uint8_t)) * n_index); } else if ((max_num_bins - 1 > static_cast(std::numeric_limits::max()) && max_num_bins - 1 <= static_cast(std::numeric_limits::max())) && isDense) { index.SetBinTypeSize(common::kUint16BinsTypeSize); index.Resize((sizeof(uint16_t)) * n_index); } else { index.SetBinTypeSize(common::kUint32BinsTypeSize); index.Resize((sizeof(uint32_t)) * n_index); } } } // namespace xgboost