#include #include #include #include #include "../../../src/common/hist_util.h" #include "../helpers.h" namespace xgboost { namespace common { size_t GetNThreads() { size_t nthreads; #pragma omp parallel { #pragma omp master nthreads = omp_get_num_threads(); } return nthreads; } TEST(ParallelGHistBuilder, Reset) { constexpr size_t kBins = 10; constexpr size_t kNodes = 5; constexpr size_t kNodesExtended = 10; constexpr size_t kTasksPerNode = 10; constexpr double kValue = 1.0; const size_t nthreads = GetNThreads(); HistCollection collection; collection.Init(kBins); for(size_t inode = 0; inode < kNodesExtended; inode++) { collection.AddHistRow(inode); } ParallelGHistBuilder hist_builder; hist_builder.Init(kBins); std::vector target_hist(kNodes); for(size_t i = 0; i < target_hist.size(); ++i) { target_hist[i] = collection[i]; } common::BlockedSpace2d space(kNodes, [&](size_t node) { return kTasksPerNode; }, 1); hist_builder.Reset(nthreads, kNodes, space, target_hist); common::ParallelFor2d(space, nthreads, [&](size_t inode, common::Range1d r) { const size_t itask = r.begin(); const size_t tid = omp_get_thread_num(); GHistRow hist = hist_builder.GetInitializedHist(tid, inode); // fill hist by some non-null values for(size_t j = 0; j < kBins; ++j) { hist[j].Add(kValue, kValue); } }); // reset and extend buffer target_hist.resize(kNodesExtended); for(size_t i = 0; i < target_hist.size(); ++i) { target_hist[i] = collection[i]; } common::BlockedSpace2d space2(kNodesExtended, [&](size_t node) { return kTasksPerNode; }, 1); hist_builder.Reset(nthreads, kNodesExtended, space2, target_hist); common::ParallelFor2d(space2, nthreads, [&](size_t inode, common::Range1d r) { const size_t itask = r.begin(); const size_t tid = omp_get_thread_num(); GHistRow hist = hist_builder.GetInitializedHist(tid, inode); // fill hist by some non-null values for(size_t j = 0; j < kBins; ++j) { ASSERT_EQ(0.0, hist[j].GetGrad()); ASSERT_EQ(0.0, hist[j].GetHess()); } }); } TEST(ParallelGHistBuilder, ReduceHist) { constexpr size_t kBins = 10; constexpr size_t kNodes = 5; constexpr size_t kNodesExtended = 10; constexpr size_t kTasksPerNode = 10; constexpr double kValue = 1.0; const size_t nthreads = GetNThreads(); HistCollection collection; collection.Init(kBins); for(size_t inode = 0; inode < kNodes; inode++) { collection.AddHistRow(inode); } ParallelGHistBuilder hist_builder; hist_builder.Init(kBins); std::vector target_hist(kNodes); for(size_t i = 0; i < target_hist.size(); ++i) { target_hist[i] = collection[i]; } common::BlockedSpace2d space(kNodes, [&](size_t node) { return kTasksPerNode; }, 1); hist_builder.Reset(nthreads, kNodes, space, target_hist); // Simple analog of BuildHist function, works in parallel for both tree-nodes and data in node common::ParallelFor2d(space, nthreads, [&](size_t inode, common::Range1d r) { const size_t itask = r.begin(); const size_t tid = omp_get_thread_num(); GHistRow hist = hist_builder.GetInitializedHist(tid, inode); for(size_t i = 0; i < kBins; ++i) { hist[i].Add(kValue, kValue); } }); for(size_t inode = 0; inode < kNodes; inode++) { hist_builder.ReduceHist(inode, 0, kBins); // We had kTasksPerNode tasks to add kValue to each bin for each node // So, after reducing we expect to have (kValue * kTasksPerNode) in each node for(size_t i = 0; i < kBins; ++i) { ASSERT_EQ(kValue * kTasksPerNode, collection[inode][i].GetGrad()); ASSERT_EQ(kValue * kTasksPerNode, collection[inode][i].GetHess()); } } } TEST(CutsBuilder, SearchGroupInd) { size_t constexpr kNumGroups = 4; size_t constexpr kRows = 17; size_t constexpr kCols = 15; auto pp_dmat = CreateDMatrix(kRows, kCols, 0); std::shared_ptr p_mat {*pp_dmat}; std::vector group(kNumGroups); group[0] = 2; group[1] = 3; group[2] = 7; group[3] = 5; p_mat->Info().SetInfo( "group", group.data(), DataType::kUInt32, kNumGroups); HistogramCuts hmat; size_t group_ind = CutsBuilder::SearchGroupIndFromRow(p_mat->Info().group_ptr_, 0); ASSERT_EQ(group_ind, 0); group_ind = CutsBuilder::SearchGroupIndFromRow(p_mat->Info().group_ptr_, 5); ASSERT_EQ(group_ind, 2); EXPECT_ANY_THROW(CutsBuilder::SearchGroupIndFromRow(p_mat->Info().group_ptr_, 17)); delete pp_dmat; } namespace { class SparseCutsWrapper : public SparseCuts { public: std::vector const& ColPtrs() const { return p_cuts_->Ptrs(); } std::vector const& ColValues() const { return p_cuts_->Values(); } }; } // anonymous namespace TEST(SparseCuts, SingleThreadedBuild) { size_t constexpr kRows = 267; size_t constexpr kCols = 31; size_t constexpr kBins = 256; auto pp_dmat = CreateDMatrix(kRows, kCols, 0); std::shared_ptr p_fmat {*pp_dmat}; common::GHistIndexMatrix hmat; hmat.Init(p_fmat.get(), kBins); HistogramCuts cuts; SparseCuts indices(&cuts); auto const& page = *(p_fmat->GetBatches().begin()); indices.SingleThreadBuild(page, p_fmat->Info(), kBins, false, 0, page.Size(), 0); ASSERT_EQ(hmat.cut.Ptrs().size(), cuts.Ptrs().size()); ASSERT_EQ(hmat.cut.Ptrs(), cuts.Ptrs()); ASSERT_EQ(hmat.cut.Values(), cuts.Values()); ASSERT_EQ(hmat.cut.MinValues(), cuts.MinValues()); delete pp_dmat; } TEST(SparseCuts, MultiThreadedBuild) { size_t constexpr kRows = 17; size_t constexpr kCols = 15; size_t constexpr kBins = 255; omp_ulong ori_nthreads = omp_get_max_threads(); omp_set_num_threads(16); auto Compare = #if defined(_MSC_VER) // msvc fails to capture [kBins](DMatrix* p_fmat) { #else [](DMatrix* p_fmat) { #endif HistogramCuts threaded_container; SparseCuts threaded_indices(&threaded_container); threaded_indices.Build(p_fmat, kBins); HistogramCuts container; SparseCuts indices(&container); auto const& page = *(p_fmat->GetBatches().begin()); indices.SingleThreadBuild(page, p_fmat->Info(), kBins, false, 0, page.Size(), 0); ASSERT_EQ(container.Ptrs().size(), threaded_container.Ptrs().size()); ASSERT_EQ(container.Values().size(), threaded_container.Values().size()); for (uint32_t i = 0; i < container.Ptrs().size(); ++i) { ASSERT_EQ(container.Ptrs()[i], threaded_container.Ptrs()[i]); } for (uint32_t i = 0; i < container.Values().size(); ++i) { ASSERT_EQ(container.Values()[i], threaded_container.Values()[i]); } }; { auto pp_mat = CreateDMatrix(kRows, kCols, 0); DMatrix* p_fmat = (*pp_mat).get(); Compare(p_fmat); delete pp_mat; } { auto pp_mat = CreateDMatrix(kRows, kCols, 0.0001); DMatrix* p_fmat = (*pp_mat).get(); Compare(p_fmat); delete pp_mat; } omp_set_num_threads(ori_nthreads); } } // namespace common } // namespace xgboost