#' eXtreme Gradient Boosting Training #' #' \code{xgb.train} is an advanced interface for training an xgboost model. #' The \code{xgboost} function is a simpler wrapper for \code{xgb.train}. #' #' @param params the list of parameters. The complete list of parameters is #' available in the \href{http://xgboost.readthedocs.io/en/latest/parameter.html}{online documentation}. Below #' is a shorter summary: #' #' 1. General Parameters #' #' \itemize{ #' \item \code{booster} which booster to use, can be \code{gbtree} or \code{gblinear}. Default: \code{gbtree}. #' } #' #' 2. Booster Parameters #' #' 2.1. Parameters for Tree Booster #' #' \itemize{ #' \item{ \code{eta} control the learning rate: scale the contribution of each tree by a factor of \code{0 < eta < 1} #' when it is added to the current approximation. #' Used to prevent overfitting by making the boosting process more conservative. #' Lower value for \code{eta} implies larger value for \code{nrounds}: low \code{eta} value means model #' more robust to overfitting but slower to compute. Default: 0.3} #' \item{ \code{gamma} minimum loss reduction required to make a further partition on a leaf node of the tree. #' the larger, the more conservative the algorithm will be.} #' \item \code{max_depth} maximum depth of a tree. Default: 6 #' \item{\code{min_child_weight} minimum sum of instance weight (hessian) needed in a child. #' If the tree partition step results in a leaf node with the sum of instance weight less than min_child_weight, #' then the building process will give up further partitioning. #' In linear regression mode, this simply corresponds to minimum number of instances needed to be in each node. #' The larger, the more conservative the algorithm will be. Default: 1} #' \item{ \code{subsample} subsample ratio of the training instance. #' Setting it to 0.5 means that xgboost randomly collected half of the data instances to grow trees #' and this will prevent overfitting. It makes computation shorter (because less data to analyse). #' It is advised to use this parameter with \code{eta} and increase \code{nrounds}. Default: 1} #' \item \code{colsample_bytree} subsample ratio of columns when constructing each tree. Default: 1 #' \item \code{lambda} L2 regularization term on weights. Default: 1 #' \item \code{alpha} L1 regularization term on weights. (there is no L1 reg on bias because it is not important). Default: 0 #' \item{ \code{num_parallel_tree} Experimental parameter. number of trees to grow per round. #' Useful to test Random Forest through XGBoost #' (set \code{colsample_bytree < 1}, \code{subsample < 1} and \code{round = 1}) accordingly. #' Default: 1} #' \item{ \code{monotone_constraints} A numerical vector consists of \code{1}, \code{0} and \code{-1} with its length #' equals to the number of features in the training data. #' \code{1} is increasing, \code{-1} is decreasing and \code{0} is no constraint.} #' \item{ \code{interaction_constraints} A list of vectors specifying feature indices of permitted interactions. #' Each item of the list represents one permitted interaction where specified features are allowed to interact with each other. #' Feature index values should start from \code{0} (\code{0} references the first column). #' Leave argument unspecified for no interaction constraints.} #' } #' #' 2.2. Parameters for Linear Booster #' #' \itemize{ #' \item \code{lambda} L2 regularization term on weights. Default: 0 #' \item \code{lambda_bias} L2 regularization term on bias. Default: 0 #' \item \code{alpha} L1 regularization term on weights. (there is no L1 reg on bias because it is not important). Default: 0 #' } #' #' 3. Task Parameters #' #' \itemize{ #' \item{ \code{objective} specify the learning task and the corresponding learning objective, users can pass a self-defined function to it. #' The default objective options are below: #' \itemize{ #' \item \code{reg:squarederror} Regression with squared loss (Default). #' \item{ \code{reg:squaredlogerror}: regression with squared log loss \eqn{1/2 * (log(pred + 1) - log(label + 1))^2}. #' All inputs are required to be greater than -1. #' Also, see metric rmsle for possible issue with this objective.} #' \item \code{reg:logistic} logistic regression. #' \item \code{reg:pseudohubererror}: regression with Pseudo Huber loss, a twice differentiable alternative to absolute loss. #' \item \code{binary:logistic} logistic regression for binary classification. Output probability. #' \item \code{binary:logitraw} logistic regression for binary classification, output score before logistic transformation. #' \item \code{binary:hinge}: hinge loss for binary classification. This makes predictions of 0 or 1, rather than producing probabilities. #' \item{ \code{count:poisson}: Poisson regression for count data, output mean of Poisson distribution. #' \code{max_delta_step} is set to 0.7 by default in poisson regression (used to safeguard optimization).} #' \item{ \code{survival:cox}: Cox regression for right censored survival time data (negative values are considered right censored). #' Note that predictions are returned on the hazard ratio scale (i.e., as HR = exp(marginal_prediction) in the proportional #' hazard function \code{h(t) = h0(t) * HR)}.} #' \item{ \code{survival:aft}: Accelerated failure time model for censored survival time data. See #' \href{https://xgboost.readthedocs.io/en/latest/tutorials/aft_survival_analysis.html}{Survival Analysis with Accelerated Failure Time} #' for details.} #' \item \code{aft_loss_distribution}: Probability Density Function used by \code{survival:aft} and \code{aft-nloglik} metric. #' \item{ \code{multi:softmax} set xgboost to do multiclass classification using the softmax objective. #' Class is represented by a number and should be from 0 to \code{num_class - 1}.} #' \item{ \code{multi:softprob} same as softmax, but prediction outputs a vector of ndata * nclass elements, which can be #' further reshaped to ndata, nclass matrix. The result contains predicted probabilities of each data point belonging #' to each class.} #' \item \code{rank:pairwise} set xgboost to do ranking task by minimizing the pairwise loss. #' \item{ \code{rank:ndcg}: Use LambdaMART to perform list-wise ranking where #' \href{https://en.wikipedia.org/wiki/Discounted_cumulative_gain}{Normalized Discounted Cumulative Gain (NDCG)} is maximized.} #' \item{ \code{rank:map}: Use LambdaMART to perform list-wise ranking where #' \href{https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision}{Mean Average Precision (MAP)} #' is maximized.} #' \item{ \code{reg:gamma}: gamma regression with log-link. #' Output is a mean of gamma distribution. #' It might be useful, e.g., for modeling insurance claims severity, or for any outcome that might be #' \href{https://en.wikipedia.org/wiki/Gamma_distribution#Applications}{gamma-distributed}.} #' \item{ \code{reg:tweedie}: Tweedie regression with log-link. #' It might be useful, e.g., for modeling total loss in insurance, or for any outcome that might be #' \href{https://en.wikipedia.org/wiki/Tweedie_distribution#Applications}{Tweedie-distributed}.} #' } #' } #' \item \code{base_score} the initial prediction score of all instances, global bias. Default: 0.5 #' \item{ \code{eval_metric} evaluation metrics for validation data. #' Users can pass a self-defined function to it. #' Default: metric will be assigned according to objective #' (rmse for regression, and error for classification, mean average precision for ranking). #' List is provided in detail section.} #' } #' #' @param data training dataset. \code{xgb.train} accepts only an \code{xgb.DMatrix} as the input. #' \code{xgboost}, in addition, also accepts \code{matrix}, \code{dgCMatrix}, or name of a local data file. #' @param nrounds max number of boosting iterations. #' @param evals Named list of `xgb.DMatrix` datasets to use for evaluating model performance. #' Metrics specified in either \code{eval_metric} or \code{feval} will be computed for each #' of these datasets during each boosting iteration, and stored in the end as a field named #' \code{evaluation_log} in the resulting object. When either \code{verbose>=1} or #' \code{\link{xgb.cb.print.evaluation}} callback is engaged, the performance results are continuously #' printed out during the training. #' E.g., specifying \code{evals=list(validation1=mat1, validation2=mat2)} allows to track #' the performance of each round's model on mat1 and mat2. #' @param obj customized objective function. Should take two arguments: the first one will be the #' current predictions (either a numeric vector or matrix depending on the number of targets / classes), #' and the second one will be the `data` DMatrix object that is used for training. #' #' It should return a list with two elements `grad` and `hess` (in that order), as either #' numeric vectors or numeric matrices depending on the number of targets / classes (same #' dimension as the predictions that are passed as first argument). #' @param feval customized evaluation function. Just like `obj`, should take two arguments, with #' the first one being the predictions and the second one the `data` DMatrix. #' #' Should return a list with two elements `metric` (name that will be displayed for this metric, #' should be a string / character), and `value` (the number that the function calculates, should #' be a numeric scalar). #' #' Note that even if passing `feval`, objectives also have an associated default metric that #' will be evaluated in addition to it. In order to disable the built-in metric, one can pass #' parameter `disable_default_eval_metric = TRUE`. #' @param verbose If 0, xgboost will stay silent. If 1, it will print information about performance. #' If 2, some additional information will be printed out. #' Note that setting \code{verbose > 0} automatically engages the #' \code{xgb.cb.print.evaluation(period=1)} callback function. #' @param print_every_n Print each n-th iteration evaluation messages when \code{verbose>0}. #' Default is 1 which means all messages are printed. This parameter is passed to the #' \code{\link{xgb.cb.print.evaluation}} callback. #' @param early_stopping_rounds If \code{NULL}, the early stopping function is not triggered. #' If set to an integer \code{k}, training with a validation set will stop if the performance #' doesn't improve for \code{k} rounds. #' Setting this parameter engages the \code{\link{xgb.cb.early.stop}} callback. #' @param maximize If \code{feval} and \code{early_stopping_rounds} are set, #' then this parameter must be set as well. #' When it is \code{TRUE}, it means the larger the evaluation score the better. #' This parameter is passed to the \code{\link{xgb.cb.early.stop}} callback. #' @param save_period when it is non-NULL, model is saved to disk after every \code{save_period} rounds, #' 0 means save at the end. The saving is handled by the \code{\link{xgb.cb.save.model}} callback. #' @param save_name the name or path for periodically saved model file. #' @param xgb_model a previously built model to continue the training from. #' Could be either an object of class \code{xgb.Booster}, or its raw data, or the name of a #' file with a previously saved model. #' @param callbacks a list of callback functions to perform various task during boosting. #' See \code{\link{xgb.Callback}}. Some of the callbacks are automatically created depending on the #' parameters' values. User can provide either existing or their own callback methods in order #' to customize the training process. #' #' Note that some callbacks might try to leave attributes in the resulting model object, #' such as an evaluation log (a `data.table` object) - be aware that these objects are kept #' as R attributes, and thus do not get saved when using XGBoost's own serializaters like #' \link{xgb.save} (but are kept when using R serializers like \link{saveRDS}). #' @param ... other parameters to pass to \code{params}. #' @param label vector of response values. Should not be provided when data is #' a local data file name or an \code{xgb.DMatrix}. #' @param missing by default is set to NA, which means that NA values should be considered as 'missing' #' by the algorithm. Sometimes, 0 or other extreme value might be used to represent missing values. #' This parameter is only used when input is a dense matrix. #' @param weight a vector indicating the weight for each row of the input. #' #' @return #' An object of class \code{xgb.Booster}. #' #' @details #' These are the training functions for \code{xgboost}. #' #' The \code{xgb.train} interface supports advanced features such as \code{evals}, #' customized objective and evaluation metric functions, therefore it is more flexible #' than the \code{xgboost} interface. #' #' Parallelization is automatically enabled if \code{OpenMP} is present. #' Number of threads can also be manually specified via the \code{nthread} #' parameter. #' #' While in other interfaces, the default random seed defaults to zero, in R, if a parameter `seed` #' is not manually supplied, it will generate a random seed through R's own random number generator, #' whose seed in turn is controllable through `set.seed`. If `seed` is passed, it will override the #' RNG from R. #' #' The evaluation metric is chosen automatically by XGBoost (according to the objective) #' when the \code{eval_metric} parameter is not provided. #' User may set one or several \code{eval_metric} parameters. #' Note that when using a customized metric, only this single metric can be used. #' The following is the list of built-in metrics for which XGBoost provides optimized implementation: #' \itemize{ #' \item \code{rmse} root mean square error. \url{https://en.wikipedia.org/wiki/Root_mean_square_error} #' \item \code{logloss} negative log-likelihood. \url{https://en.wikipedia.org/wiki/Log-likelihood} #' \item \code{mlogloss} multiclass logloss. \url{https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html} #' \item \code{error} Binary classification error rate. It is calculated as \code{(# wrong cases) / (# all cases)}. #' By default, it uses the 0.5 threshold for predicted values to define negative and positive instances. #' Different threshold (e.g., 0.) could be specified as "error@0." #' \item \code{merror} Multiclass classification error rate. It is calculated as \code{(# wrong cases) / (# all cases)}. #' \item \code{mae} Mean absolute error #' \item \code{mape} Mean absolute percentage error #' \item{ \code{auc} Area under the curve. #' \url{https://en.wikipedia.org/wiki/Receiver_operating_characteristic#'Area_under_curve} for ranking evaluation.} #' \item \code{aucpr} Area under the PR curve. \url{https://en.wikipedia.org/wiki/Precision_and_recall} for ranking evaluation. #' \item \code{ndcg} Normalized Discounted Cumulative Gain (for ranking task). \url{https://en.wikipedia.org/wiki/NDCG} #' } #' #' The following callbacks are automatically created when certain parameters are set: #' \itemize{ #' \item \code{xgb.cb.print.evaluation} is turned on when \code{verbose > 0}; #' and the \code{print_every_n} parameter is passed to it. #' \item \code{xgb.cb.evaluation.log} is on when \code{evals} is present. #' \item \code{xgb.cb.early.stop}: when \code{early_stopping_rounds} is set. #' \item \code{xgb.cb.save.model}: when \code{save_period > 0} is set. #' } #' #' Note that objects of type `xgb.Booster` as returned by this function behave a bit differently #' from typical R objects (it's an 'altrep' list class), and it makes a separation between #' internal booster attributes (restricted to jsonifyable data), accessed through \link{xgb.attr} #' and shared between interfaces through serialization functions like \link{xgb.save}; and #' R-specific attributes (typically the result from a callback), accessed through \link{attributes} #' and \link{attr}, which are otherwise #' only used in the R interface, only kept when using R's serializers like \link{saveRDS}, and #' not anyhow used by functions like \link{predict.xgb.Booster}. #' #' Be aware that one such R attribute that is automatically added is `params` - this attribute #' is assigned from the `params` argument to this function, and is only meant to serve as a #' reference for what went into the booster, but is not used in other methods that take a booster #' object - so for example, changing the booster's configuration requires calling `xgb.config<-` #' or 'xgb.parameters<-', while simply modifying `attributes(model)$params$<...>` will have no #' effect elsewhere. #' #' @seealso #' \code{\link{xgb.Callback}}, #' \code{\link{predict.xgb.Booster}}, #' \code{\link{xgb.cv}} #' #' @references #' #' Tianqi Chen and Carlos Guestrin, "XGBoost: A Scalable Tree Boosting System", #' 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016, \url{https://arxiv.org/abs/1603.02754} #' #' @examples #' data(agaricus.train, package='xgboost') #' data(agaricus.test, package='xgboost') #' #' ## Keep the number of threads to 1 for examples #' nthread <- 1 #' data.table::setDTthreads(nthread) #' #' dtrain <- with( #' agaricus.train, xgb.DMatrix(data, label = label, nthread = nthread) #' ) #' dtest <- with( #' agaricus.test, xgb.DMatrix(data, label = label, nthread = nthread) #' ) #' evals <- list(train = dtrain, eval = dtest) #' #' ## A simple xgb.train example: #' param <- list(max_depth = 2, eta = 1, nthread = nthread, #' objective = "binary:logistic", eval_metric = "auc") #' bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0) #' #' ## An xgb.train example where custom objective and evaluation metric are #' ## used: #' logregobj <- function(preds, dtrain) { #' labels <- getinfo(dtrain, "label") #' preds <- 1/(1 + exp(-preds)) #' grad <- preds - labels #' hess <- preds * (1 - preds) #' return(list(grad = grad, hess = hess)) #' } #' evalerror <- function(preds, dtrain) { #' labels <- getinfo(dtrain, "label") #' err <- as.numeric(sum(labels != (preds > 0)))/length(labels) #' return(list(metric = "error", value = err)) #' } #' #' # These functions could be used by passing them either: #' # as 'objective' and 'eval_metric' parameters in the params list: #' param <- list(max_depth = 2, eta = 1, nthread = nthread, #' objective = logregobj, eval_metric = evalerror) #' bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0) #' #' # or through the ... arguments: #' param <- list(max_depth = 2, eta = 1, nthread = nthread) #' bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0, #' objective = logregobj, eval_metric = evalerror) #' #' # or as dedicated 'obj' and 'feval' parameters of xgb.train: #' bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals, #' obj = logregobj, feval = evalerror) #' #' #' ## An xgb.train example of using variable learning rates at each iteration: #' param <- list(max_depth = 2, eta = 1, nthread = nthread, #' objective = "binary:logistic", eval_metric = "auc") #' my_etas <- list(eta = c(0.5, 0.1)) #' bst <- xgb.train(param, dtrain, nrounds = 2, evals = evals, verbose = 0, #' callbacks = list(xgb.cb.reset.parameters(my_etas))) #' #' ## Early stopping: #' bst <- xgb.train(param, dtrain, nrounds = 25, evals = evals, #' early_stopping_rounds = 3) #' #' ## An 'xgboost' interface example: #' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, #' max_depth = 2, eta = 1, nthread = nthread, nrounds = 2, #' objective = "binary:logistic") #' pred <- predict(bst, agaricus.test$data) #' #' @rdname xgb.train #' @export xgb.train <- function(params = list(), data, nrounds, evals = list(), obj = NULL, feval = NULL, verbose = 1, print_every_n = 1L, early_stopping_rounds = NULL, maximize = NULL, save_period = NULL, save_name = "xgboost.model", xgb_model = NULL, callbacks = list(), ...) { check.deprecation(...) params <- check.booster.params(params, ...) check.custom.obj() check.custom.eval() # data & evals checks dtrain <- data if (!inherits(dtrain, "xgb.DMatrix")) stop("second argument dtrain must be xgb.DMatrix") if (length(evals) > 0) { if (typeof(evals) != "list" || !all(vapply(evals, inherits, logical(1), what = 'xgb.DMatrix'))) stop("'evals' must be a list of xgb.DMatrix elements") evnames <- names(evals) if (is.null(evnames) || any(evnames == "")) stop("each element of 'evals' must have a name tag") } # Handle multiple evaluation metrics given as a list for (m in params$eval_metric) { params <- c(params, list(eval_metric = m)) } params <- c(params) params['validate_parameters'] <- TRUE if (!("seed" %in% names(params))) { params[["seed"]] <- sample(.Machine$integer.max, size = 1) } # callbacks tmp <- .process.callbacks(callbacks, is_cv = FALSE) callbacks <- tmp$callbacks cb_names <- tmp$cb_names rm(tmp) # Early stopping callback (should always come first) if (!is.null(early_stopping_rounds) && !("early_stop" %in% cb_names)) { callbacks <- add.callback( callbacks, xgb.cb.early.stop( early_stopping_rounds, maximize = maximize, verbose = verbose ), as_first_elt = TRUE ) } # evaluation printing callback print_every_n <- max(as.integer(print_every_n), 1L) if (verbose && !("print_evaluation" %in% cb_names)) { callbacks <- add.callback(callbacks, xgb.cb.print.evaluation(print_every_n)) } # evaluation log callback: it is automatically enabled when 'evals' is provided if (length(evals) && !("evaluation_log" %in% cb_names)) { callbacks <- add.callback(callbacks, xgb.cb.evaluation.log()) } # Model saving callback if (!is.null(save_period) && !("save_model" %in% cb_names)) { callbacks <- add.callback(callbacks, xgb.cb.save.model(save_period, save_name)) } # The tree updating process would need slightly different handling is_update <- NVL(params[['process_type']], '.') == 'update' # Construct a booster (either a new one or load from xgb_model) bst <- xgb.Booster( params = params, cachelist = append(evals, dtrain), modelfile = xgb_model ) niter_init <- bst$niter bst <- bst$bst .Call( XGBoosterCopyInfoFromDMatrix_R, xgb.get.handle(bst), dtrain ) if (is_update && nrounds > niter_init) stop("nrounds cannot be larger than ", niter_init, " (nrounds of xgb_model)") niter_skip <- ifelse(is_update, 0, niter_init) begin_iteration <- niter_skip + 1 end_iteration <- niter_skip + nrounds .execute.cb.before.training( callbacks, bst, dtrain, evals, begin_iteration, end_iteration ) # the main loop for boosting iterations for (iteration in begin_iteration:end_iteration) { .execute.cb.before.iter( callbacks, bst, dtrain, evals, iteration ) xgb.iter.update( bst = bst, dtrain = dtrain, iter = iteration - 1, obj = obj ) bst_evaluation <- NULL if (length(evals) > 0) { bst_evaluation <- xgb.iter.eval( bst = bst, evals = evals, iter = iteration - 1, feval = feval ) } should_stop <- .execute.cb.after.iter( callbacks, bst, dtrain, evals, iteration, bst_evaluation ) if (should_stop) break } cb_outputs <- .execute.cb.after.training( callbacks, bst, dtrain, evals, iteration, bst_evaluation ) extra_attrs <- list( call = match.call(), params = params ) curr_attrs <- attributes(bst) if (NROW(curr_attrs)) { curr_attrs <- curr_attrs[ setdiff( names(curr_attrs), c(names(extra_attrs), names(cb_outputs)) ) ] } curr_attrs <- c(extra_attrs, curr_attrs) if (NROW(cb_outputs)) { curr_attrs <- c(curr_attrs, cb_outputs) } attributes(bst) <- curr_attrs return(bst) }