require(xgboost) data(iris) iris[,5] <- as.numeric(iris[,5]=='setosa') iris <- as.matrix(iris) set.seed(20) test_ind <- sample(1:nrow(iris),50) train_ind <- setdiff(1:nrow(iris),test_ind) dtrain <- xgb.DMatrix(iris[train_ind,1:4], label=iris[train_ind,5]) dtest <- xgb.DMatrix(iris[test_ind,1:4], label=iris[test_ind,5]) watchlist <- list(eval = dtest, train = dtrain) print('start running example to start from a initial prediction\n') param <- list(max_depth=2,eta=1,silent=1,objective='binary:logistic') bst <- xgb.train( param, dtrain, 1, watchlist ) ptrain <- predict(bst, dtrain, outputmargin=TRUE) ptest <- predict(bst, dtest, outputmargin=TRUE) # dtrain.set_base_margin(ptrain) # dtest.set_base_margin(ptest) cat('this is result of running from initial prediction\n') bst <- xgb.train( param, dtrain, 1, watchlist )