require(xgboost) data(iris) iris[,5] <- as.numeric(iris[,5]=='setosa') iris <- as.matrix(iris) set.seed(20) test_ind <- sample(1:nrow(iris),50) train_ind <- setdiff(1:nrow(iris),test_ind) dtrain <- xgb.DMatrix(iris[train_ind,1:4], label=iris[train_ind,5]) dtest <- xgb.DMatrix(iris[test_ind,1:4], label=iris[test_ind,5]) param <- list(max_depth=2,eta=1,silent=1,objective='binary:logistic') watchlist <- list(eval = dtest, train = dtrain) num_round <- 2 bst <- xgb.train(param, dtrain, num_round, watchlist) preds <- predict(bst, dtest) labels <- getinfo(dtest,'label') cat('error=', mean(as.numeric(preds>0.5)!=labels),'\n') xgb.save(bst, 'xgb.model') xgb.dump(bst, 'dump.raw.txt') xgb.dump(bst, 'dump.nuce.txt','../data/featmap.txt') bst2 <- xgb.load('xgb.model') preds2 <- predict(bst2,dtest) stopifnot(sum((preds-preds2)^2)==0) cat('start running example of build DMatrix from numpy array\n') x <- iris[,1:4] y <- iris[,5] class(x) dtrain <- xgb.DMatrix(x, label = y) bst <- xgb.train(param, dtrain, num_round, watchlist) cat('start running example of build DMatrix from scipy.sparse CSR Matrix\n') x <- as(x,'dgCMatrix') class(x) dtrain <- xgb.DMatrix(x, label = y) bst <- xgb.train(param, dtrain, num_round, watchlist)