setClass("xgb.Booster") #' Predict method for eXtreme Gradient Boosting model #' #' Predicted values based on xgboost model object. #' #' @param object Object of class "xgb.Boost" #' @param newdata takes \code{matrix}, \code{dgCMatrix}, local data file or #' \code{xgb.DMatrix}. #' @param outputmargin whether the prediction should be shown in the original #' value of sum of functions, when outputmargin=TRUE, the prediction is #' untransformed margin value. In logistic regression, outputmargin=T will #' output value before logistic transformation. #' @param ntreelimit limit number of trees used in prediction, this parameter is only valid for gbtree, but not for gblinear. #' set it to be value bigger than 0. It will use all trees by default. #' @examples #' data(iris) #' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]), nrounds = 2) #' pred <- predict(bst, as.matrix(iris[,1:4])) #' @export #' setMethod("predict", signature = "xgb.Booster", definition = function(object, newdata, outputmargin = FALSE, ntreelimit = NULL) { if (class(newdata) != "xgb.DMatrix") { newdata <- xgb.DMatrix(newdata) } if (is.null(ntreelimit)) { ntreelimit <- 0 } else { if (ntreelimit < 1){ stop("predict: ntreelimit must be equal to or greater than 1") } } ret <- .Call("XGBoosterPredict_R", object, newdata, as.integer(outputmargin), as.integer(ntreelimit), PACKAGE = "xgboost") return(ret) })